
Frames, Environments, and Scope in R and S-PLUS∗

Appendix to An R and S-PLUS Companion to Applied Regression

John Fox

March 2002

1 Introduction

Section 2.2.1 of the text describes in some detail how objects are located along the search path in R and
S-PLUS. I believe that the material presented there suffices for the everyday use of S in data analysis.
Elsewhere in the text – for example, in describing local functions in Section 8.3.4 – I occasionally make
reference to the different ‘scoping’ rules in R and S-PLUS.

The object of this Appendix is to provide a slightly deeper discussion of this issue, in particular with
respect to the manner in which the values of variables are determined when functions are executed. This
material, while difficult, is occasionally important in writing S programs. More complete treatments are
available for S-PLUS in Becker, Chambers, and Wilks (1988: Sec. 5.4), and for both R and S-PLUS in
Venables and Ripley (2000: Sec. 3.4).1

2 Basic Definitions: Frames, Environments, and Scope

Several general concepts are useful for understanding how S assigns values to variables. These definitions
are adapted from Abelson, Sussman, and Sussman (1985), where they are developed in much greater detail.
A good briefer discussion of most of these concepts may be found in Tierney (1990: Sec. 3.5).

• A variable that is assigned a value is said to be bound to that value. Variables are normally bound
to values by assignments (e.g., x <- 5), or by passing values to function arguments [e.g., f(x=2)]. In
the latter instance, the binding is local to the function call.

• A frame is a set of bindings. A variable may have at most one binding in a particular frame, but the
same variable may be bound to different values in different frames. (In S, the same variable may be
bound to a function definition and to an object of another mode, such as a numeric vector or list. The
S interpreter is able to distinguish between the two values by context.)

• If a variable is unbound in a particular frame it is said to be a free variable in that frame. For example,
when the function f <- function (x) x + a is called as f(2), x is bound to the value 2 in the local
frame of the function call, but a is a free variable in that frame. Likewise, the assignment x <- 5

made at the command prompt binds the value 5 to x in the global frame. In R, the global frame is
called the global environment or the workspace, and is kept in memory. This usage conflicts with the
definition of the term ‘environment’ given below. In S-PLUS, global bindings are made in the working

directory on disk.

∗I am grateful to Robert Stine of the University of Pennsylvania for helpful comments on this appendix.
1As in the text, I use ‘S-PLUS’ as a shorthand for versions 3 and 4 of S, which correspond, for example, respectively to

S-PLUS 2000 and 6.0 for Windows. I use ‘S’ more generally to denote both R and S-PLUS.

1

• Scoping rules determine where the interpreter looks for values of free variables. The scoping rules in R
and S-PLUS are different, and are explained below. In the previous example, however (assuming that
the function f was defined in the global frame), both the R and S-PLUS interpreters would look for
the free variable a in the global frame and subsequently on the rest of the search path.2

• An environment is a sequence of frames. A value bound to a variable in a frame earlier in the sequence
will take precedence over a value bound to the same variable in a frame later in the sequence. The first
value is said to shadow or mask the second. This idea is familiar from the discussion in Section 2.2.1
of the search path in S. Indeed, the frames on the search path, starting with the global frame, are at
the end of the frame-sequence of every environment. Therefore, variables that are bound to values in
frames on the search path are globally visible, unless shadowed by bindings earlier in the sequence. I
will call this sequence of frames the global environment. As noted, this usage conflicts with standard
R terminology, in which the single frame of the workspace is called the ‘global environment.’

• The scope of a variable binding is the set of environments in which it is visible.

In the literature describing R and S-PLUS (such as the references in Section 1), the terms frame and en-

vironment are used somewhat differently from the definitions given here, but my (more general) terminology
serves our current purpose, and, in particular, facilitates comparisons between R and S-PLUS. For example,
in the literature on S-PLUS, there is a distinction between frames, which exist in memory and hence are
transient, and databases on the search path, which are libraries or lists (most commonly, data frames), but
both are frames in the sense that they associate variables with values.

3 Scoping Rules in R and S-PLUS

In R, the environment of a function (i.e., the environment created by a function call) comprises the local
frame of the function call followed by the environment in which the function was defined (the enclosing

environment); this rule is called lexical or static scoping. A function together with its environment is termed
a closure. In contrast, in S-PLUS, the environment of a function consists of the local frame of the function
call followed directly by the global environment.3 The following examples (some of them adapted from
Tierney, 1990: Sec. 3.5) elucidate the consequences of this distinction.

I begin with a simple illustration, introduced in the preceding section:

> f <- function (x) x + a

> a <- 10

> x <- 5

> f(2)

[1] 12

When f is called, the local binding of x ≡ 2, shadows the global binding x ≡ 5. The variable a is a
free variable in the frame of the function call, and so the global binding a ≡ 10 applies.4 This example,
diagrammed in Figure 1, produces an identical result in R and S-PLUS.

Now consider an example in which one function calls another:

> f<- function (x) {

+ a <- 5

+ g(x)

2This description is slightly simplified for S-PLUS. There are special frames, called the top-level frame and the session frame,
that are interrogated before the global frame (i.e., the working directory in S-PLUS). Assignments made at the command prompt
are evaluated in the top-level frame, and only committed to the global frame if an expression executes without error. Certain
variables, such as options, are held in the session frame. Both the top-level frame and the session frame reside in memory. For
most purposes, we may think of these special frames as part of the global frame.

3Another common rule is dynamic scoping, according to which the environment of a function comprises the local frame of
the function followed by the environment from which the function was called (not defined, as in lexical scoping). Neither R nor
S-PLUS employs dynamic scoping. Dynamic scoping is less powerful than lexical scoping for some purposes, but it is arguably
more intuitive.

4To avoid confusion, I use ≡ to represent a binding.

2

global frame
a 10

x 5

/

/

frame of f(2)

x 2/

f(2)

Figure 1: Environment for the function call f(2). Each box represents a frame, with variables bound in the
frame shown within the box. The solid arrow represents a function definition: The function f is defined in
the global frame. The broken arrow represents the sequence of frames comprising the environment of the
function call: The variable a, unbound in the frame of the call, is located in the global frame, while the local
binding of x shadows the global binding. The dashed-dotted arrow represents the call; f is called from the
global frame.

+ }

> g <- function(y) y + a

> f(2)

[1] 12

(I have used different names for the arguments of f and g – respectively, x and y – to emphasize the fact
that argument names are arbitrary.) Again, R and S-PLUS produce the same result, but for subtly different
reasons:

• In R, the global binding a ≡ 10 is used when f calls g, because a is a free variable in g, and g is defined
at the command prompt in the global frame.

• In S-PLUS, the global binding a ≡ 10 is used simply because a is a free variable in g, and the S-PLUS
interpreter always looks to the global frame after the local frame of the function call.

Note that in both cases the binding a ≡ 5 in the local frame of f is ignored (see Figure 2).5

The next illustration, employing a locally defined function, reveals the difference in the scoping rules for
R and S-PLUS. Beginning with R:

> f <- function (x) {

+ a <- 5

+ g <- function (y) y + a

+ g(x)

+ }

> f(2)

[1] 7

The local function g is defined within the function f, and so the environment of g comprises the local frame
of g followed by the environment of f. Because a is a free variable in g, the interpreter next looks for a value
for a in the local frame of f; it finds the value a ≡ 5, which shadows the global binding a ≡ 10 (see Figure
3).

In contrast, in S-PLUS:

5 If R or S-PLUS were dynamically scoped (as described in note 3), then when g is called from f the interpreter would look
first for a free variable in the frame of f.

3

global frame
a 10

x 5

/

/

frame of f(2)

a 5

x 2/

/

frame of g(x)

y 2/

f(2)

g(x)

Figure 2: In this case, both f and g are defined in the global frame; f is called from the global frame, while
g is called from f. The free variable a in g gets its value from the global frame in both R and S-PLUS.

global frame
a 10

x 5

/

/

frame of f(2)

a 5

x 2

/

/

frame of g(x)

y 2/

f(2)

g(x)

Figure 3: Lexical scoping in R: g is a local function defined in f and called from f. The free variable a in g

is located in the frame of f(2), and shadows a variable by the same name in the global frame.

4

global frame
a 10

x 5

/

/

frame of f(2)

a 5

x 2/

/

frame of g(x)

y 2/

f(2)

g(x)

Figure 4: Scoping in S-PLUS: Even though g is a local function defined in f and called from f, the free
variable a in g takes its value from a in the global frame.

> f <- function (x) {

+ a <- 5

+ g <- function (y) y + a

+ g(x)

+ }

> f(2)

[1] 12

When it encounters the free variable a in g, the S-PLUS interpreter ignores the binding a ≡ 5 in f and looks
instead to the global environment, where it finds the binding a ≡ 10. (Figure 4). Consequently, to pass a
local variable to a local sub-function in S-PLUS, it is most straight-foward to incorporate the variable as an
argument to the sub-function:

> f <- function (x) {

+ a <- 5

+ g <- function (y, b) y + b

+ g(x, a)

+ }

> f(2)

[1] 7

This version produces identical results in R and S-PLUS (as diagrammed in Figure 5).
Because locally defined variables are visible to local functions, the lexical scoping rule of R is somewhat

more convenient than the scoping rule employed by S-PLUS. Lexical scoping is also more powerful in certain
circumstances. Consider the following R function:

> make.power <- function(power){

+ function(x) x^power

+ }

>

The make.power function returns a closure as its result:

> square <- make.power(2)

> square

function(x) x^power

<environment: 01485604>

5

global frame
a 10

x 5

/

/

frame of f(2)

a 5

x 2/

/

frame of g(x, a)
b = 5

y 2/

f(2)

g(x, a)

R

S-PLUS

Figure 5: The function g is a local function defined in and called from f. Because there are no free variables
in g, however, it does not matter that the environment of g is different in R and S-PLUS.

global frame

frame of make.power(2)

power 2/

frame of square(4)

x 4/

make.power(2)

square(4)

Figure 6: Lexical scoping in R: The function square is defined in the frame of make.power(2) and thus
its environment includes this frame. The variable power is free in the frame of square(4), but the binding
power ≡ 2 is located in the frame of make.power(2), even though square is called from the global frame.

> square(4)

[1] 16

> cuberoot <- make.power(1/3)

> cuberoot

function(x) x^power

<environment: 01486AE0>

> cuberoot(64)

[1] 4

Notice what happens here (Figure 6): When make.power is called with the argument 2 (or 1/3), this value
is bound to the local variable power. The function that is returned is defined in the local frame of the call
to make.power and therefore inherits the environment of this call, including the binding of power.

Because S-PLUS is not lexically scoped, this procedure fails (cryptically):6

> make.power <- function(power){

+ function(x) x^power

+ }

>

6The output is from S3 (S-PLUS 2000), but a similar error is produced in S4 (S-PLUS 6.0).

6

global frame

frame of make.power(2)

power 2/

frame of square(4)

x 4/

make.power(2)

square(4)

remainder of path
power function (lambda = 1) . . ./

Figure 7: Scoping in S-PLUS: Although square is defined in the frame of make.power(2), it tries to resolve
the reference to the free variable power in the global frame, and failing that, along the remainder of the
search path. Eventually, it finds a function bound to power, causing square(4) to fail.

> square <- make.power(2)

> square

function(x)

x^power

> square(4)

Error in x^power: Non-numeric second operand

In S-PLUS, make.power returns a function rather than a closure (i.e., a function together with an envi-
ronment): In the function square, power is a free variable, not bound to the value 2. Consequently, when
square is called, the S-PLUS interpreter looks for a binding for power in the global environment; it finds a
function called power, producing an error when it tries to use this function as if it were a numerical exponent
(see Figure 7).

References

Abelson, H., G. J. Sussman & J. Sussman. 1985. Structure and Interpretation of Computer Programs.
Cambridge MA: MIT Press.

Becker, R. A., J. M. Chambers & A. R. Wilks. 1988. The New S Language: A Programming Environment

for Data Analysis and Graphics. Pacific Grove CA: Wadsworth.

Tierney, L. 1990. LISP-STAT: An Object-Oriented Environment for Statistical Computing and Dynamic

Graphics. New York: Wiley.

Venables, W. N. & B. D. Ripley. 2000. S Programming. New York: Springer-Verlag.

7

