
An Introduction to ESS + XEmacs for Windows Users of R

John Fox∗

McMaster University

Revised: 5 February 2006

1 Why Use ESS + XEmacs?
Emacs is a powerful and widely used programmer’s editor. One of the principal attractions of
Emacs is its programmability: Emacs can be adapted to provide customized support for program-
ming languages, including such features as delimiter (e.g., parenthesis) matching, syntax highlight-
ing, debugging, and version control. The ESS (“Emacs Speaks Statistics”) package provides such
customization for several common statistical computing packages and programming environments,
including the S family of languages (R and various versions of S-PLUS), SAS, and Stata, among
others. The current document introduces the use of ESS with R running under Microsoft Windows.
For some Unix/Linux users, Emacs is more a way of life than an editor: It is possible to do almost

everything from within Emacs, including, of course, programming, but also writing documents in
mark-up languages such as HTML and LATEX; reading and writing email; interacting with the Unix
shell; web browsing; and so on. I expect that this kind of generalized use of Emacs will not be
attractive to most Windows users, who will prefer to use familiar, and specialized, tools for most of
these tasks.
There are several versions of the Emacs editor, the two most common of which are GNU Emacs,

a product of the Free Software Foundation, and XEmacs, an offshoot of GNU Emacs. Both of these
implementations are free and are available for most computing platforms, including Windows. When
I wrote the first version of this document, I held the opinion that XEmacs offers certain advantages
to Windows users, such as easier installation, and so I chose to explain the use of ESS under this
version of the Emacs editor. I understand that these advantages may no longer hold.
As I am writing this, there are several Windows programming editors that have been customized

for use with R. The three most advanced customizations are ESS (as explained, for Emacs), R-
WinEdt (for the shareware WinEdt editor; see http://www.winedt.com), and Tinn-R (for the free,
open-source editor Tinn, see http://www.sciviews.org/Tinn-R).1 In comparison to WinEdt or Tinn-R,
use of ESS entails several advantages and disadvantages:

Advantages of ESS

• The combination of ESS and Emacs provides a very powerful editor, with advanced features
customized to the needs of the statistical programmer and data analyst. Of course, to realize
this advantage fully, it is necessary to learn to use ESS/Emacs (henceforth, “ESS”) beyond
the superficial level.

• If you use R on more than one platform (say, both Windows and Linux systems), then you
can employ the same user interface for all platforms.

∗I’m grateful to Stephen Eglin for corrections to an earlier version of this document.
1From version 2.0.0, R for Windows has included a simple script editor that should meet many users’ needs for a

basic editor, especially when R is used for data analysis rather than programming.

1

• If you use more than one statistical package supported by ESS (say, R and SAS), then you can
employ the same user interface for all packages. Indeed, you can use more than one package
(possibly running on more than one computer) simultaneously from the same ESS session.

• You may prefer the standard ESS interface – which splits a main window into two subwindows
– to working with separate WinEdt and R windows: The upper XEmacs subwindow displays
R source-code files2, while the lower window shows the input and output for the R process
running under XEmacs.

• XEmacs and ESS are free (but so is Tinn-R).
Disadvantages of ESS

• The editing environment provided by ESS will be somewhat unfamiliar to Windows users. To
a large extent, however, the configuration file that I supply for ESS will make its behaviour
more familiar (see Section 2). As well, I provide some background information pertaining to
the basic use of Emacs (see Section 2.3). In sum, ESS has more the feel of a Unix editor than
a Windows editor, particularly when it is used beyond the basic level.

• When you run R under ESS, you implicitly run rterm.exe rather than rgui.exe for the R
process. Rterm.exe is used because ESS requires simple text output; on the other side of
the equation, ESS in effect provides many of the basic services normally provided by the R
GUI3 (graphical user interface), and my configuration file provides menus similar to those in
the R GUI. Some features are lost, however, including the ability to use the familiar Windows
compiled-HTML help system. HTML help, which displays in your web browser, may be used
in place of compiled-HTML help; by default, my configuration file enables HTML help for the
current R session.

• There are some unresolved issues, the seriousness of which varies from system to system,
associated with running R under ESS on Windows systems (see Section 3.1).

Both WinEdt and ESS require some configuration for use with R under Windows. (Section 3
describes how to install and configure ESS.) In contrast, Tinn-R works out-of-the-box. I expect that
many Windows users will prefer to work with WinEdt or Tinn-R, but it is certainly worth giving
ESS a try. After all, you have nothing to lose but your time!

2 Basic Use of ESS + Emacs
The purpose of this section is to get you started using R under ESS. For more information about
ESS, XEmacs, and Emacs in general, consult the brief annotated bibliography in Section 4.

2.1 Preliminaries

If you have installed and configured XEmacs as I suggest in Section 3, then when you fire up the
editor, the screen will appear as in Figure 1. You will see a message at the bottom of the screen (in
the “echo area and minibuffer”) indicating that the .Rhistory file cannot be read from the current
directory. Don’t worry about the message.

2Strictly speaking, the windows show “buffers,” some of which are the memory image of files, rather than files
themselves. On start-up, the upper window displays the *scratch* buffer, which is not associated with any file. By
default, the *scratch* buffer is not used for editing R code. See Section 2.2 for more information about buffers and
files.

3 “R GUI” may well be misleading, since it does not provide a graphical user interface to the statistical capabilities
of R. For a basic-statistics GUI, see my Rcmdr package, available on CRAN. The Rcmdr package does not run reliably
under XEmacs/ESS for Windows.

2

Menu bar

Toolbar

Upper
window

position of
window in
buffer

major
mode

buffer
name

“point”

Mode line

Lower
window

Minibuffer

Figure 1: The XEmacs “frame” at start-up, with major components labelled. The *scratch* buffer
appears in the upper window, the “inferior R process” in the lower window. The “point” is at the
start of the *scratch* buffer.

3

• The window labelled “emacs” is called a frame in Emacs jargon. Although XEmacs can run
in several frames simultaneously, the standard ESS configuration uses a single frame divided
into two subwindows, henceforth called simply windows.

• At the top of the frame are a menu bar and a toolbar. These are interface elements familiar
to Windows users. Some of the menus and toolbar buttons will also be familiar. The content
of the menu bar and toolbar changes with the major mode of the buffer (see below) in the
current window. ESS provides a toolbar customized for use with R4 (which appears when a
file with extension .R is in the active buffer). When you start to use ESS, take some time to
explore the various menus.

• Each Emacs window displays the contents of a buffer, which is a region of the computer’s
memory containing text.

— The upper window displays the *scratch* buffer. As its name implies, the *scratch*
buffer is intended to be impermanent, although its contents can be saved to a file (e.g.,
by pressing the Save button in the toolbar). By default, the *scratch* buffer is not
used to edit R code, so your first step should be to open a file with extension .R in the
upper window; this can be an existing file or a new one. For example, I pressed the Open
button in the toolbar and entered the name of the new file scratch.R; the result appears
in Figure 2. Note that the upper buffer is now in ESS[S] mode (see the discussion of
modes below), for entering R commands.

— The lower window displays the output produced by the “inferior” R process. I will
resist the temptation to say something humourous, and simply explain that the process
is termed “inferior” because it runs under the control of Emacs. You can also type R
commands at the > prompt in this buffer.

• The R toolbar provides buttons for interacting with the R process.

— The first few buttons (Open, Save, etc.) are familiar and likely do not require explanation.

— The buttons for R and S-PLUS are for starting R and S-PLUS processes, respectively.
Because my configuration file starts up an R process, you can disregard these buttons.5

— The next four buttons can be used to send commands from the upper R script window
to the lower R process window – the current line; a selected region; the entire buffer
(silently); or a function definition.

— The last button switches the focus to the lower window.

• Below each window is a mode line, which shows status information for the buffer displayed
in the corresponding window, including the name of the buffer; the major mode (and, if
applicable, minor modes – see below) of the buffer; and the position of the window in the
buffer. For example, the upper window in Figure 1, which displays the *scratch* buffer, is
in Lisp Interaction major mode, while the upper window in Figure 2, which displays the
buffer for scratch.R, is in ESS[S] major mode, and the window shows All of the current
content of the buffer (which is empty). Similarly, the lower window (in both cases) contains
the *R* buffer, which is in iESS (inferior ESS) major mode, and is currently positioned at the
bottom (Bot) of the buffer.

4Actually, the toolbar is more generally for implementations of S, including R and S-PLUS.
5Although ESS can handle several simultaneously executing statistical processes, my configuration cannot.

4

Figure 2: The new file scratch.R has been opened in the upper buffer, which is now in ESS[S]
mode.

5

• The point is the Emacs cursor. It appears in the active window – initially, in the *scratch*
buffer. By and large, the point behaves in a familiar manner, but it sometimes helps to
remember that most activity takes place to the left of the point.6 In particular:

— When you type, characters are entered to the left of the point, moving existing text to
the right.

— After you mark a region of text – most intuitively by placing the mouse cursor to the
left of the first character in the region and dragging over the region (i.e., clicking and
holding down the left mouse button) – the point should be positioned immediately to
the right of the last character in the region. In other words, if after marking a region the
point is over a character, that character is not included in the marked region.

• At the bottom of the frame is a small one-line window called the echo area and minibuffer.
The echo area/minibuffer displays messages (such as the initial message about the missing
history file). As well, when you enter Emacs commands using the keyboard, the commands
appear in the echo area/minibuffer. Finally, you will occasionally type in the minibuffer when
you execute a command.

— For example, to search for (or search for and replace) text in the current buffer, you may
press the Replace button in the toolbar. When you do so, Emacs prompts in the echo
area/minibuffer for the search and replacement strings; press the Enter key after typing
each string. Emacs proceeds to find the first matching entry in the buffer below the point.
Type y to effect the replacement, n to keep the current text. Emacs continues to search
until the last occurrence of the search string is located. Alternatively, click in a window
to terminate the search.

— Note, as well, that you can search for (or search for and replace) text via the Edit menu,
or by entering one of many Emacs commands (see the references in Section 4).

2.2 Buffers, Files, Modes, and Windows

As mentioned, Emacs buffers reside in memory and contain text. In many, but not all, cases, the
contents of a buffer are read from a disk file; for example, you can load a file into a buffer by using
the Open button on the toolbar, navigating to and selecting the file in the standard Windows file
dialog box that appears. As I did in the preceding section, one can type the name of a nonexistent
file; the file is not created until the buffer is saved.
Once read, the contents of the buffer are independent of the contents of the corresponding file,

in the sense that changes to the buffer are not automatically reflected in the file. To make changes
to the buffer permanent, save the file (e.g., using the Save button on the toolbar).
At any given time, each buffer is in one, and only one, major mode; for buffers loaded from

files, the major mode is determined by the file extension. For example, buffers loaded from files
with extensions .r, .R, .s, .S, and .q are in major mode ESS[S], for S-language source code. The
behaviour of Emacs in a particular buffer is governed to a certain extent by the major mode of the
buffer. For example, major modes may be associated with specialized menus and key-bindings, and
ESS[S] mode provides syntax highlighting, delimiter-matching, line indentation, and certain other
features appropriate to S-language code.
A buffer may also be in any number of minor modes, which provide additional special features.

For example, syntax highlighting in ESS is implemented through the font-lock minor mode.

6 I have redefined the Delete key in ESS mode so that it deletes the character under (technically, to the right of)
the point. In contrast, the Backspace key deletes the character to the left of the point. This is the usual Windows
convention.

6

An Emacs window is literally a window into a buffer. Depending upon the size of the buffer, the
window may display the entire contents of the buffer or just part of the buffer. In familiar Windows
fashion, you can use the scroll bar at the right to move a window up and down within its buffer.

2.3 A Simple Modus Operandi

For purposes of simplicity, I recommend that you proceed as follows, at least initially:

• Use the upper window for buffers containing R source code. For example, in Figure 3, I have
loaded the script file for Chapter 1 of Fox (2002) into the upper buffer. Notice that XEmacs
provides tabs, immediately below the toolbar, for switching between the Ch1-script.R and
previously created scratch.R buffers; this feature makes it easy to work simultaneously with
several R source buffers in the upper window.

• Send commands and function definitions from the upper window to the lower window for
execution using the buttons in the toolbar.

• The first time that you try to execute commands in a particular source buffer, ESS prints
the following query in the echo area/minibuffer: Process to load into: R (see Figure 3).
Simply press Enter to send this and subsequent commands from the buffer to the R process.
The question is posed only once for each source buffer.

• Output appears in the lower window, as shown in Figure 4. Use the scroll bar to move through
the output.

• As mentioned, you can also enter commands directly in the lower window by typing them at
the > command prompt.

• I have added an R submenu to the ESS menu, which is displayed when the point is in an
R source-code buffer. The R submenu includes an item to stop runaway computations along
with three submenus, File, Packages, andMisc., with the following menu items (which perform
functions similar to those provided by the menus in the R GUI):7

— ESS =⇒ R =⇒ File =⇒ Source R code ...: Opens a dialog box to select a file to be
“sourced” into the R process.

— ESS =⇒ R =⇒ File =⇒ Save workspace ...: Save the R workspace to a file.

— ESS =⇒ R =⇒ File =⇒ Load workspace ...: Load a file containing a saved R workspace.

— ESS =⇒ R =⇒ File =⇒ Change R directory ...: Change the working directory for the
R process (but not for R source files displayed in the upper window).

— ESS =⇒ R =⇒ Packages =⇒ Load package ...: Load an R package, attaching it to the
search path.

— ESS =⇒ R =⇒ Packages =⇒ Install packages from CRAN ...: Select, download, and
install packages from CRAN (requires an active Internet connection).

— ESS =⇒ R =⇒ Packages =⇒ Install packages from Bioconductor ...: Select, download,
and install packages from Bioconductor (requires an active Internet connection).

— ESS =⇒ R =⇒ Packages =⇒ Install packages from local zip files ...: Select and install a
package for which the zip file resides on your local computer or network.

7Some of the menu items may not function correctly on many Windows systems and therefore are disabled by
default. See Section 3.1 for more information.

7

Figure 3: The buffer for the file Ch1-script.R is shown in the upper window. The first time that
commands are executed, answer the query in the minibuffer by pressing the Enter key.

Figure 4: The lower window with R output.

8

— ESS =⇒ R =⇒ Packages =⇒ Update packages from CRAN : Look for newer versions of
all installed packages, download them from CRAN, and install them (requires an active
Internet connection).

— ESS =⇒ R =⇒ Packages =⇒ Update packages from Bioconductor : Look for newer ver-
sions of all installed packages, download them from Bioconductor, and install them (re-
quires an active Internet connection).

— ESS =⇒ R =⇒ Misc. =⇒ Remove all objects: Delete all objects currently in the R
workspace.

— ESS =⇒ R =⇒ Misc. =⇒ List objects: List objects in the R workspace.

— ESS =⇒ R =⇒ Misc. =⇒ Display path: List the R search path.

• I have also added an Exit R/XEmacs submenu to the File menu, with the following menu
items:

— File =⇒ Exit R/XEmacs =⇒ Quit saving R workspace: The workspace is saved in the
current R directory, and you are given an opportunity to save modified buffers (with the
exception of the *scratch* buffer).

— File =⇒ Exit R/XEmacs =⇒ Just quit : Terminate the R process without saving the
workspace; you are still asked whether or not to save modified buffers.

• I have optionally redefined the key-combinations Control-x, Control-c, and Control-v so that
they perform the familiar Windows editing functions (i.e., cut, copy, and paste marked text)
in R source-code buffers and in the R-process buffer. Unfortunately, Control-x and Control-c
are often used as “prefixes” for Emacs multi-key editing commands, and these redefinitions
effectively disable those commands in R code and process buffers. The standard Windows
behaviour of these keys is therefore turned off by default.8 You can alternatively use the
standard Windows chords Control-Insert for “copy,” Shift-Insert for “paste,” and Shift-Delete
for “cut.” In addition, I have made some other small changes meant to make Emacs’s behaviour
more “Windows-like”; for example, I redefined the Delete key so that it deletes the character
under the point (actually, to the right of the point), which is the standard Windows convention,
rather than to the left of the point. This and other similar small changes seem to me innocuous
– for example, the Backspace key still deletes to the left – and therefore are turned on by
default in my configuration file.9

2.4 Obtaining Help

By default, my configuration enables HTML help.

• Entering help(object) or ?object in the upper window, and pasting this command into the
lower window opens your default web browser with the HTML help page for object .

• Entering help(object) or ?object directly at the command prompt in the lower window
opens the help page for object in a help buffer in the upper window. This is useful, for
example, for pasting examples from the help page into the R process. You can close the help
buffer by selecting Delete Buffer from the Buffer menu.

8 In any event, standard Emacs control keys are still in effect by default in the *scratch* buffer.
9 If you wish, you can edit my init.el file to provide the editing behaviour that you want. Simple instructions are

near the beginning of the file (and are discussed in Section 3.1).

9

• Entering help.start() from either window starts your web browser with the initial page of
the HTML help system. From this page, you can search the help system; navigate to help
pages from all installed packages; and examine HTML versions of the R manuals. A reasonable
procedure is to include utils::help.start() in your Rprofile.site initialization file.

Help on XEmacs is also available, most conveniently through the Help menu, at the right of the
menu bar. Select Help =⇒ Tutorial =⇒ English for an interactive Emacs tutorial (in English, of
course).

2.5 Graphics Output

When working in ESS, you can start a graphics device in the normal manner, explicitly by entering an
appropriate command – for example, windows() or trellis.device() (from the lattice package)
– or implicitly by calling a high-level plotting function, such a plot. The graphics device opens in
its own window, and includes the usual menus associated with R graphics devices in Windows (e.g.,
for saving graphs to files or copying them to the clipboard).10

2.6 More on Emacs

Beneath the veneer of menus, dialogs, toolbars, and the mouse, Emacs is fundamentally a keyboard-
oriented editor. This keyboard orientation partly reflects the origin of Emacs as an editor for
use on character-based terminals (indeed, Emacs provides a primitive windowing system for such
terminals), but it also reflects the opinion of most serious Emacs users that it is desirable to access
editor commands without removing one’s hands from the keyboard.
Almost all Emacs editing commands are implemented as programs written in Emacs Lisp, a

dialect of the Lisp programming language (see Cameron, Rosenblatt, and Raymond, 1996: Ch. 13).
Most commands are accessible through simple key-combinations. Moreover, the Emacs keyboard is
redefinable, and most major editing modes, such as for ESS, include special key definitions. Likewise,
menu selections and toolbar buttons work by calling Emacs Lisp commands.
The sources in the annotated bibliography (Section 4) include detailed information on Emacs

and ESS editing keys, so I will restrict myself here to orienting information and a few examples.
Emacs keyboard commands typically use special key-combinations (or “chords”) involving either the
Control key (hereafter, C-) or the Meta key (M-). There are literally dozens of such chords: To see
the “key bindings” in effect in the active buffer, enter the chord C-h b (i.e., Control -h followed by
b).

• Control—key chords are entered by simultaneously pressing the Control key and some other
key. For example, the chord C-fmoves the point forward one character (invoking the command
forward-char). (You can also use the arrow keys to move the point left, right, up, or down.)

• On the PC keyboard, Meta-key chords are entered either by simultaneously pressing the Alt
key and some other key, or by pressing the Esc (escape) key and some other key in sequence
(i.e., without holding down Esc). For example, the chord M-f moves the point forward one
word (invoking the command forward-word).

• Some key commands require a sequence of key presses. For example, C-x u (i.e., Control -x
followed by u) invokes the undo command. Note that this key sequence will not work in R
source-code buffers and in the R process buffer if you uese my optional editing-key redefinition
of C-x (i.e, to cut text). You can, however, switch to the *scratch* buffer in the upper
window to restore the standard Emacs behaviour for C-x.

10You may find that some of these menus don’t work properly when R is run under ESS.

10

• Other key commands require that information be entered into the echo area/minibuffer. For ex-
ample, the chord C-s initiates an “incremental search” (via the command isearch-forward):
As you type successive characters in the echo area/minibuffer, the point forward moves to the
first instance of those characters in the buffer.

• The chord M-x permits you to enter Emacs commands in the echo area/minibuffer; after the
command is complete, press the Enter key. For example, M-x isearch-forward followed by
Enter begins an incremental search (and is equivalent to C-s).

2.7 Terminating the Session

You may end your ESS session by selecting Exit XEmacs from the File menu, or by clicking on the
standard-Windows £ button at the top-right of the emacs frame; XEmacs will give you a chance to
save any modified buffers. Before you exit, however, you should terminate the R process by entering
q() at the command prompt in the lower window, or by selecting Quit S from the iESS menu (which
is displayed when the R process buffer has the focus); R will ask you whether you want to save the
workspace. Simply killing the R process does not terminate it normally.
As mentioned in Section 2.3, the simplest way to terminate the session properly is to select Exit

R/XEmacs from the File menu.

3 Installing and Configuring XEmacs + ESS
I assume that you want to configure XEmacs primarily for use with ESS and R. If you want to use
XEmacs more generally as a programming and text editor, then the configuration that I suggest
should probably be adjusted.
An installer for XEmacs can downloaded from the Internet at

<http://www.xemacs.org/Download/win32/#InnoSetup-Download>

Run the installer, installing (unless you have a compelling reason for doing otherwise) XEmacs to
the default location, and requesting that a desktop icon be created. These instructions have been
checked using the XEmacs Setup 21.4.19.exe installer. Earlier version of XEmacs will not work
properly with my init.el file (described below).
Download the latest version of the zip file for ESS from

<http://ess.r-project.org/downloads/ess/>

At the time of writing, this is ess-5.2.11.zip. Unzip the contents of this zip archive in c:\Program
Files\XEmacs\site-packages\ (or modify to reflect where you installed XEmacs), being sure to
preserve the directory structure. This should create a subdirectory named ess-x.y.z, where x.y.z
is the ESS version number (e.g., 5.2.11).
I assume as well that R is installed in the default location,

c:\Program Files\R\R-x.y.z \
(where x.y.z represents the R version number – e.g., 2.2.1)11, that XEmacs is installed in

c:\Program Files\XEmacs\
and that there is an icon for XEmacs on the desktop. If this is not the case, adjust the directions
below accordingly.

11R for Windows is available at <http://cran.r-project.org/bin/windows/base/>, or at one of the R mirror sites
<http://cran.r-project.org/mirrors.html>.

11

1. Determine whether you have a “home” directory and, if so, where it is:

• In Windows 9x or ME, open an MS/DOS Prompt window and enter set at the command
prompt. Look at the resulting list of environment variables and their values. If the
environment variable HOME exists, note the directory to which it points. Alternatively,
you can enter the command echo %HOME%. If HOME does not exist, create it by entering the
line set HOME=c:\ in your autoexec.bat file. The environment variable will be created
when you reboot the computer.12

• In Windows NT, 2000, and XP, open a Command Prompt (DOS) window. Enter the com-
mand echo %HOMEDRIVE%%HOMEPATH% or the command set HOME to discover the location
of your home directory.13

2. Create the subdirectory .xemacs in your home directory. Note that (as far as I am aware)
Windows Explorer does not permit you to rename a directory to a name beginning with a
period. Instead, open an MS/DOS or Command Prompt window; make sure that you are in
your home directory; and issue the command mkdir .xemacs.

3. Copy my configuration file init.el to the .xemacs directory. This file can be obtained from

<http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/ESS/>

• If you want to use XEmacs for purposes other than running R, you can maintain your
present init.el file and rename my configuration as, say, Rinit.el (still in the .xemacs
subdirectory of your home directory). Make a second desktop icon for XEmacs (see step 6,
below). When you are editing the icon’s properties, add -q -l "~\.xemacs\Rinit.el"
to the end of the Target field.14

4. If it is not already there, add

c:\Program Files\R\R-x.y.z \bin
to the Windows search path:

• In Windows NT, 2000, or XP, go to System in the Windows Control Panel. On the
Advanced tab, press the Environment Variables ... button. In the resulting dialog box,
click on the Path variable under either User variables or System variables; click the Edit
button; add

;c:\Program Files\R\R-x.y.z \bin
to the end of the path; and back out of the dialog boxes by clicking OK repeatedly.

• In Windows 9x or ME, add the following line to the end of your autoexec.bat file:
path=%path%;"c:\Program Files\R\R-x.y.z \bin"

(In either case, remember that x.y.z represents the R version number.)

5. As an alternative to modifying the search path (in step 4 above), edit the init.el file in
a plain-text editor such as Windows Notepad (or XEmacs!) to tell ESS the location of the
rterm.exe program; simply set the variable inferior-R-program-name as decribed near the
beginning of my init.el file.

12 If you prefer, you can define a different directory as HOME.
13Windows users who have roaming profiles should set the HOME environment variable to %USERPROFILE%\Application

Data , so that they can get their own profiles regardless of where they log on. I’m grateful to Henric Nilsson for pointing
this out to me.
14 I’m grateful to Brian Lopes for this suggestion.

12

6. Right-click on the XEmacs desktop icon; click on Properties in the pop-up menu. Specify a
Start in directory for XEmacs on the Shortcut tab – for example, c:\temp. An alternative is
to create different XEmacs icons for different projects, and to start each in the directory for
the corresponding project: Begin by right-clicking and dragging the original XEmacs icon to
make a copy of it. If you always want to open a particular file when XEmacs starts up – for
example, a file containing R source code for the project – then add the name of this file to
the end of the Target field (preceded by one or more spaces, following the closing double-quote
around the path to xemacs.exe)15; rename the icon on the General tab to reflect the project.

7. If you wish, edit the Rprofile.site file in

c:\Program Files\R\R-x.y.z \etc
adding the line

utils::help.start()

Once these configuration steps have been performed, double-clicking on the XEmacs icon should
start up XEmacs, ESS, and R, much as in Figure 1.

3.1 Further Configuration and Trouble-Shooting

There are unresolved problems in the communication between ESS and the inferior-R process on
Windows systems. The problems manifest themselves in graphical-interface elements not functioning
correctly; for example:

• Calling up a dialog box (e.g., through a menu selection) may have no effect; issuing an interrupt
(via the menus, for example) may return control to the command prompt. In an extreme case,
the R process may hang.

• Some menus in graphics-device windows (e.g., the File =⇒ Save as menu) may not function
properly.

• You may find it impossible to exit from the identify function via a right-mouse click or menu
selection, and may have to close the graphics window instead.

• Dialog boxes may not automatically rise to the front and may be hidden by the XEmacs
window. In this event, click on the dialog in the Windows taskbar to bring it to the front.

Partly to cope with ESS/R communications problems, I have provided several configuration
options that can be conveniently set by editing my init.el configuration file, using a text editor
such as Windows Notepad (or XEmacs!). These options appear near the top of the file, which also
contains detailed information about each option and recommended settings. I suggest that you read
these options before using the configuration file.

4 Brief Annotated Bibliography
1. D. Cameron, B. Rosenblatt, and E. Raymond (1996). Learning GNU Emacs. Sebastopol CA:
O’Reilly. A broad introduction to Emacs, for those who really want to get serious about the
subject. The book includes some information on programming in Emacs Lisp, the language
used to extend the capabilities of the editor, but does not specifically cover XEmacs or the use
of Emacs on Windows systems.

15For example, I use the file $scratch$.R, which I normally don’t save.

13

2. J. Fox (2002). An R and S-PLUS Companion to Applied Regression. Thousand Oaks CA:
Sage. (Referenced in the text.)

3. A. J. Rossini, R. M. Heiberger, K. Hornik, M. Maechler, R. A. Sparapani, and S. J. Eglen
(2004). ESS – Emacs Speaks Statistics, ESS version 5.2.12. <http://ess.r-project.org/>. This
is a clear and well written, but not-quite-complete, manual for ESS, in HTML and PDF form.
As far as I know, this manual is the only source that describes the use of ESS in any detail.

4. A. J. Rossini, M. Mächler, K. Hornik, R. M. Heiberger, and R. A. Sparapani, (2001). Emacs
Speaks Statistics: A Universal Interface for Statistical Analysis. <http://stat.ethz.ch/ESS/
Techrep.pdf>.
One of several similar unpublished papers and conference presentations that primarily describe
the rationale for and general design of ESS. Some information on usage is provided as well.

5. R. Stallman and R. Goyal (1994). Getting Started With XEmacs. One of a complete set of
manuals for XEmacs, all available at <http://www.xemacs.org/Documentation/index.html>. It
is a good place to start learning more about the general use of Emacs, as well as specific
information concerning XEmacs.

14

