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Abstract
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use examples to show that it fails generally. Furthermore, we prove a menu-of-menu-
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1 Introduction

Starting from Bernheim and Whinston (1985, 1986a,b), common agency has been an ex-

tremely useful model to analyze strategic interaction between several principals and a com-

mon agent in markets. Among many, its applications are U.S. health care system (Frandsen

and Powell (2019)), capital tax competition (Keen and Konrad (2013), Chirinko and Wilson

(2018)), lobbying (Grossman and Helpman (1994), Dixit, Grossman, and Helpman (1997),

Martimort and Semenov (2008), Esteller-More, Galmarini, and Rizzo (2012)), oligopolis-

tic competition (d’Aspremont and Ferreira (2010)), and financial contracting (Parlour and

Rajan (2001), Khalila, Martimort, and Parigic (2007)).

In the classical (one-)principal-(one-or-many-)agent model, the revelation principle is

a powerful tool for equilibrium analysis.1 However, it fails in common-agency models.2

Nevertheless, Peters (2001) and Martimort and Stole (2002) develop a different powerful

tool for common-agency models: the menu theorem.

A general mechanism offered by principal j to the common agent is a function, cj :

Mj → Yj, where Mj is a complicated message space3, and Yj is principal j’s action space.

The interpretation is that the agent could choose any message mj ∈ Mj, which would pin

down j’s action cj (mj) ∈ Yj. The menu theorem says that offering cj is equivalent to offering
the menu contract (i.e., a subset of Yj) described as follows:

cmenuj ≡ {cj (mj) ∈ Yj : mj ∈Mj} .

By offering cmenuj , principal j lets the agent choose any yj ∈ cmenuj and commits to follow

his action choice.4 The intuition of the menu theorem is that, under the general mechanism

cj, if the agent’s equilibrium message is m∗j ∈Mj, then sending m∗j under cj is equivalent to

choosing cj
(
m∗j
)
under cmenuj . Thus, it suffers no loss of generality for principals to offer the

menu contracts only, which substantially simplifies equilibrium analysis.5

1The revelation principle says that it suffers no loss of generality for the principal to offer direct mech-

anisms. In any equilibrium under any general mechanism, each agent’s equilibrium strategy depends only

on his private type. This is equivalent to agents truthfully revealing their private types, and the principal

committing to playing agents’equilibrium strategies as dictated by a direct mechanism.
2The revelation principle fails when multiple principals coexist, because an agent’s equilibrium strategy

depends on both his private type and the contracts offered by all principals. Thus, it suffers loss of generality

to focus on direct mechanisms which depend only on private types (but not on other principals’contracts).
3For example, Mj = [0, 1]. We do no impose restriction on Mj , and it could be much more complicated.
4Throughout the paper, we use she to denote a principal and he to denote an agent.
5The set of all menu contracts is 2Yj� {∅}, while the set of all general mechanisms is (Yj)Mj , and the

latter is much more complicated than the former.
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The competing mechanism model is a different but related model, in which multiple

principals and multiple agents coexist. In this model, though neither the revelation principle

nor the menu theorem holds, Yamashita (2010) proves a folk theorem. Both Yamashita’s

folk theorem and the menu theorem impose a common assumption: each principal offers a

delegated contract (i.e., a function, cj : Mj → Yj). That is, each principal fully delegates

her action to the agent(s) via cj. Szentes (2009) raises a critique about Yamashita (2010),

and argues that principals should offer non-delegated contracts rather than delegated ones.

A non-delegated contract is a function, cj : Mj → 2Yj� {∅}, i.e., the agents’messages
determine only a subset of Yj, and principal j is free to choose any action in the subset

later.6 In section 2, we review Szentes’critique in details.

Though Szentes’critique is on competing-mechanism games, we find out that the same

critique applies to common-agency games. Since the menu theorem is proved under delegated

contracts only, this immediately leads to the following two questions: (1) Does the menu

theorem still hold if we allow principals to offer non-delegated contracts? (2) If not, how

should the menu theorem be adapted? We aim to answer these two questions in this paper.

Another motivation for our study is that common agency with non-delegated contracts

is a special case of common agency with imperfect commitment à la Bester and Strausz (2000,

2001, 2007). A rigorous relationship between the two models is provided in Section 8. All of

our analysis and full characterization in the former model can be easily extended to the latter

(see Section 8). The revelation principle in mechanism design with imperfect commitment

has been scrutinized by recent papers (e.g., Bester and Strausz (2001), Doval and Skreta

(2021)), which provide various economic applications. To the best of our knowledge, this

paper is the first one to study the menu theorem (i.e., the counterpart of revelation principle)

for common agency with imperfect commitment.

To answer the two questions, we rigorously define a common-agency game without

delegation, which turns out to be non-trivial. Such a game consists of three stages.
Stage 1: principals simultaneously announce their non-delegated contracts to the agent;

Stage 2: the agent simultaneously sends messages to principals,

which pin down a subset of actions for each principal;

Stage 3: each principal simultaneously chooses an action in the subset.


Different from the delegated model in Peters (2001), the announcement and communication

structures matter in our model because a principal’s action choice at Stage 3 depends on
6A non-delegated contract describes scenarios in which a principal is still free to take some actions after

a contract is executed. An example is the adjustable rate mortgage (ARM) contract.
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what she has observed at the time. Specifically, at Stage 1, each principal may announce her

contract to the agent privately or publicly. With public announcement, principals observe

all of the contracts, whereas with private announcement, each principal observes only her

own contract. Similarly, at Stage 2, the agent may send a message to each principal privately

or publicly. With different combinations of announcement and communication protocols, we

can define four non-delegated common-agency models.7
Model 1: private announcement and private communication;

Model 2: public announcement and private communication;

Model 3: private announcement and public communication;

Model 4: public announcement and public communication

 .

In Sections 4.1 and 7.1, we use examples to show that the menu theorem fails in Models

2, 3 and 4. For Model 1, Theorem 4 shows that the menu theorem holds partially: every

equilibrium allocation under non-delegated contracts is an equilibrium allocation under menu

contracts. However, the converse is not true. In this sense, it suffers loss of generality to

focus on menu contracts only in Model 1.

Then, how should the menu theorem be adapted under non-delegated contracts? A

natural conjecture is that it suffers no loss generality to focus on menu-of-menu contracts,

where a menu-of-menu contract is subset Λj ⊂ 2Yj� {∅}, and by offering Λj, the agent can

pick any subset Ej ∈ Λj at Stage 2, and principal j commits to playing an action in Ej only at

Stage 3. The intuition is that offering a general non-delegated contract cj : Mj → 2Yj� {∅}
seems to correspond to offering the following menu-of-menu contract

cmenu−of−menuj ≡
{
cj (mj) ∈ 2Yj� {∅} : mj ∈Mj

}
.

However, this conjecture is incorrect.8 Rather, we identify two simple contract spaces, which

7For the delegated common-agency model in Peters (2001), the announcement and communication pro-

tocols do not have impact on equilibria.
8The reason is that the messages in a menu-of-menu contract are not rich enough. For instance, in an

equilibrium under general non-delegated contracts, suppose types θ and θ′ of the agent send two distinct

messages mj and m′j to principal j at Stage 2, which pin down the same subset Ej ∈ 2Yj� {∅}, while
principal j takes distinct actions yj ∈ Ej and y′j ∈ Ej at Stage 3, upon observing distinct messages mj and

m′j , respectively. If we replicate this equilibrium by a menu-of-menu contract, types θ and θ′ must choose

the same Ej ∈ 2Yj� {∅} at Stage 2, and as a result, principal j must take the same action at Stage 3, upon
observing the same message Ej from the agent.
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are augmented from menu-of-menu contracts in two particular ways: CR
j : the set of menu-of-menu-with-recommendation contracts for principal j (Definition 3),

CF
j : the set of menu-of-menu-with-full-recommendation contracts for principal j (Definition 4)

 .
That is, at Stage 2, the agent not only chooses a subset cmenu−of−menuj (mj) ∈ 2Yj� {∅}, but
also needs to make a non-binding recommendation yj ∈ cmenu−of−menuj (mj), which would

guide each principal j to choose her action at Stage 3. In particular, CF
j ⊂ CR

j , and

different from the latter, the former requires existence of a subset cmenu−of−menuj (mj) ∈
2Yj� {∅}, such that every yj ∈ cmenu−of−menuj (mj) can be recommended by the agent (i.e.,

full recommendation on cmenu−of−menuj (mj)).

Our main result (Theorem 2) establishes a menu-of-menu-with-recommendation the-

orem in Models 1, 2 and 4: it suffers no loss of generality for each principal j to offer a

contract in CR
j on the equilibrium path, and to offer contracts in C

F
j on off-equilibrium paths.

Since both CR
j and C

F
j are much simpler than the set of all general non-delegated contracts,

our theorem substantially simplifies equilibrium analysis in Models 1, 2 and 4.

It is worthy noting that it suffers loss of generality for each principal j to offer a contract

in CF
j on the equilibrium path, or to offer contracts in CR

j on off-equilibrium paths.9 Our

analysis uncovers a feature of our full characterization, which is not shared by the menu

theorem: asymmetric contract spaces between on and off the equilibrium path. Specifically,

to prove our full characterization, we need to replicate an equilibrium on the general contract

space with an equilibrium on a simple contract space: on the equilibrium path, we just mimic

one contract profile in the former space with one contract profile in the latter space, and we

show CR
j suffi ces for the latter space (but C

F
j does not); on off-equilibrium paths, we mimic

all possible contract profiles (due to all possible deviations) in the former space with those in

the latter space, and we show CF
j suffi ces for the latter space (but C

R
j does not). We embed

this subtle strategic difference into the different requirements in the definitions of CR
j and

CF
j discussed above.

In Section 7.1, we use an example to show that the menu-of-menu-with-recommendation

theorem fails in Model 3. Thus, model 3 needs a more complicated full characterization,

which is also provided in Section 7.2.

The remainder of the paper proceeds as follows: we review Szentes’critique in Section

2, and describe the model in Section 3; we study the menu theorem in Section 4, and propose

9The intuition is similar to that in Footnote 8: contracts in CFj and CRj do not have enough messages

to describe general contracts on and off the equilibrium path, respectively.
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two simpler contract spaces in Section 5; we present our main results in Sections 6 and 7;

we consider imperfect commitment in Section 8 and conclude in Section 9.

2 Szentes’critique

Consider the following example in Szentes (2009). There are two principals and three agents

with one payoff-relevant state (i.e., complete information). Each principal chooses one of the

two actions, H and T , and principals’payoffs are listed as follows.

H T

H 1,−1 −1, 1

T −1, 1 1,−1

All agents are indifferent among all action profiles.

Following Yamashita (2010), Szentes (2009) focuses on pure strategies. The min max

value of each principal’s payoffs is 1, whereas the max min value is −1. For instance, (T,H)

induces the max min value for principal 1 (i.e., the row player). By Yamashita (2010), (T,H)

can be induced by an equilibrium. Specifically, on the equilibrium path, each principal j

offers the delegated contract cj : {H,T} × {H} × {H} → {H,T} with

cj (H,H,H) = H and cj (T,H,H) = T .

That is, principals invite agent 1 only to vote regarding "H vs T ,"10 and principals follow

agent 1’s recommendation. Upon receiving such a contract profile on the equilibrium path,

agent 1 votes T and H for principals 1 and 2, respectively, which induces (T,H).

To show this is an equilibrium, consider principal 1’s deviation to a delegated contract,11

and let m̂ denote a message profile that induces an action y1 ∈ {H,T}. Given this unilateral
deviation, it is a continuation equilibrium that the agents send m̂ to principal 1 and agent

1 recommends y2 ∈ {H,T}� {y1} to principal 2, because agents are indifferent among all
action profiles. This still induces the max min value for principal 1, i.e., not a profitable

deviation for principal 1.

However, Szentes (2009) doubts the legitimacy of (T,H) being an equilibrium out-

come. Szentes (2009) argues that, in any reasonable equilibrium, every principal must

achieve at least her min max value, because she can always opt out of this contract game

10The message sets for agents 2 and 3 are degenerate (i.e., |{H}| = 1), and their votes are not informative.
11Principal 2 achieves the maximal payoff under (T,H), i.e., her incentive compatibility holds.
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and achieves her min max value in the ensuing equilibrium.12 Furthermore, Szentes (2009)

argues that principals should offer non-delegated contracts, and proves that each principal

indeed achieves at least her min max value under non-delegated contracts.

Though there are multiple agents in the example above, the same logic still applies if

we delete agents 2 and 3 from the example. Therefore, Szentes’critique also applies to the

common-agency model.

The common assumption in Yamashita (2010) and Peters (2001) is: principals are

not allowed to offer non-delegated contracts, whereas, Szentes’ critique is: if principals’

equilibrium payoffs increase by offering non-delegated contracts, there is no reason to forbid

them.

One argument against Szentes’critique is that Szentes’example does not work if we

allow for mixed-strategies, which would make the min max value be equal to the max min

value. Given mixed-strategies, though Szentes’example fails, Szentes’point remains valid for

common-agency models, which is supported by the example in Section 4.2.1. In this example,

there is an equilibrium under non-delegated contracts, which strictly Pareto dominates any

mixed-strategy equilibrium under delegated contracts.

3 Preliminaries

3.1 Primitives

A single agent privately observes her type θ ∈ Θ, which is drawn from a common prior

p ∈ ∆ (Θ) with full support. Let J ≡ {1, . . . , J} be the set of principals, with J ≥ 2.

Each principal j takes an action yj ∈ Yj. Let Y ≡ ×j∈JYj. Principal j’s utility function is
vj : Y ×Θ→ R. The agent’s utility function is u : Y ×Θ→ R. We assume |Y ×Θ| <∞.

For each j ∈ J , principal j’s contract is a function cj : MA
j → Aj, where MA

j is an

infinite set of messages that the agent can send to principal j and

Adelegatedj ≡ {{yj} : yj ∈ Yj} , Anon−delegatedj ≡ 2Yj� {∅} ,

Aj ∈
{
Adelegatedj , Anon−delegatedj

}
.

MA
j can be very general and we do not impose any other restriction on it. Let MA ≡
12See more discussions in Peters (2014).
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×k∈JMA
k and MA

−j ≡ ×k∈J�{j}MA
k .
13 If Aj = Adelegatedj , principal j delegates her action

to the agent, i.e., the agent’s message fully determines j’s action. If Aj = Anon−delegatedj ,

principal j has to strategically choose an action in cj(mj) ∈ 2Yj� {∅} after receiving a
message mj. Define A ≡ ×k∈JAk and A−j ≡ ×k∈J�{j}Ak. Let CAj ≡ (Aj)M

A
j be the set of

all possible contracts available to principal j, CA ≡ ×k∈JCAk and CA−j ≡ ×k∈J�{j}CAk .

3.2 A generic game

We will consider different contract spaces (and message spaces). Principals and the agent

will play a generic game under different contract spaces, which is defined as follow.

For each j ∈ J , let Mj be a generic set of messages that the agent may send to

principal j, and a contract of principal j is cj : Mj → Aj. Thus, Cj ≡ (Aj)Mj is a generic

contract space for principal j, which may represent a different contract space (e.g., CP
j , C

R
j ,

CF
j defined later), besides C

A
j in Section 3.1. Denote C ≡ ×k∈JCk and M ≡ ×k∈JMk.

Throughout this subsection, we fix a generic profile (M,C) to define a generic game.

3.2.1 Models and timeline

When principal j chooses her action in the set cj (mj), her decision depends not only on the

message she receives (i.e., mj), but also on what she observes regarding the contracts offered

by the other principals and the messages that the agent sends to all principals.

Let Γ ≡
[
Γk : C → 2C

]
k∈J denote a potential announcement structure. We focus on

two structures: (1) public announcement (denoted by Γpublic =
(

Γpublick

)
k∈J

) with

Γpublick (ck, c−k) = {(ck, c−k)} , ∀k ∈ J , ∀ (ck, c−k) ∈ C, (1)

and (2) private announcement (denoted by Γprivate =
(
Γprivatek

)
k∈J ) with

Γprivatek (ck, c−k) = {ck} × C−k, ∀k ∈ J , ∀ (ck, c−k) ∈ C. (2)

I.e., principals observe all of the contracts offered under public announcement, whereas,

under private announcement, each principal knows only her own contract.

13We assume MA ≡MAdelegated ≡MAnon−delegated , and we use the superscript A simply to distinguish it
from MR and MF , which will be defined later.
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Similarly, let Ψ ≡
[
Ψk : M → 2M

]
k∈J denote a communication structure. We focus on

two structures: (1) public communication (denoted by Ψpublic =
(

Ψpublic
k

)
k∈J

) with

Ψpublic
k (mk,m−k) = {(mk,m−k)} , ∀k ∈ J , ∀ (mk,m−k) ∈M , (3)

and (2) private communication (denoted by Ψprivate =
(
Ψprivate
k

)
k∈J ) with

Ψprivate
k (mk,m−k) = {mk} ×M−k, ∀k ∈ J , ∀ (mk,m−k) ∈M . (4)

I.e., under public communication, all principals observe all messages, whereas, under private

communication, each principal observes only the message she receives.

Thus, a model is characterized by a tuple 〈A,Γ,Ψ〉, where

A ∈
{
Adelegated, Anon−delegated

}
, Γ ∈

{
Γprivate, Γpublic

}
, Ψ ∈

{
Ψprivate, Ψpublic

}
.

Given a model 〈A, Γ, Ψ〉, the game proceeds according to the following timeline.

1. Before the game starts, Nature draws the agent’s type according to the common prior

p ∈ ∆(Θ) and the realized type is the agent’s private information;

2. At Stage 1, each principal j ∈ J simultaneously offers a contract cj ∈ Cj to the agent.
The agent observes c ≡ (c1, . . . , cJ), whereas each principal j ∈ J knows that only a

contract profile in Γj (c) is possibly chosen by the principals.

3. At Stage 2, the agent sends messages m ≡ (m1, . . . ,mJ) ∈ M , one for each principal.
Each principal j ∈ J knows that only a message profile in Ψj (m) is possibly sent by

the agent to the principals;

4. At Stage 3, each principal j ∈ J simultaneously chooses an action in cj(mj);

5. Finally, payoffs are realized.

In the model of Peters (2001), the agent also chooses an effort. For simplicity, we choose

not to include the agent’s effort in our model. Another reason for this modeling choice is

that the menu theorem already fails in such a simple model. In Han and Xiong (2022), we

show how our results can be extended to a model with the agent’s effort.
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3.2.2 Strategies

At Stage 1, each principal j chooses cj ∈ Cj. At Stage 2, the agent chooses a function s ≡ [sk :

C×Θ→Mk]k∈J . Let Sk be the set of all possible sk : C×Θ→Mk. Denote s ≡ (s1, . . . , sJ) ∈
S ≡ ×k∈JSk and s−j ∈ S−j ≡ ×k∈J�{j}Sk. Denote s (c, θ) = (s1 (c, θ) , . . . , sJ (c, θ)) for each

(c, θ) ∈ C × Θ. At Stage 3, each principal j’s chooses a function tj : Γj (C)× Ψj (M)→ Yj

such that

tj [Γj (cj, c−j) ,Ψj (mj,m−j)] ∈ cj(mj), ∀ [(cj, c−j) , (mj,m−j)] ∈ C ×M ,

and let Tj be the set of all such functions. Denote T ≡ (Tk)k∈J and T−j ≡ (Tk)
k∈J�{j}

.

Given any (c, s, t) ∈ C × S × T , the utility for the agent of type θ is

U (c, s, t, θ) ≡ u (t1 (Γ1 (c) ,Ψ1 (s (c, θ))) , . . . , tJ (ΓJ (c) ,ΨJ (s (c, θ))) , θ) ,

and principal j’s expected utility is

Vj(c, s, t) ≡
∑
θ∈Θ

p (θ)× vj (t1 (Γ1 (c) ,Ψ1 (s (c, θ))) , . . . , tJ (ΓJ (c) ,ΨJ (s (c, θ))) , θ) .

3.2.3 Legitimate beliefs

At Stage 3, principal j must form a belief on (C ×M ×Θ) conditional on Γj (c) she observes

at Stage 1 and Ψj (m) she observes at Stage 2. It is described by a function bj : Γj (C) ×
Ψj (M) → ∆ (C ×M ×Θ). Given belief bj, principal j’s expected utility conditional on(
αj, βj

)
∈ Γj (C)×Ψj (M) is

Vj
(
tj, t−j|αj, βj, bj

)
≡

∫
bj(αj ,βj)

vj (t1 (Γ1 (c) ,Ψ1 (m)) , . . . , tJ (ΓJ (c) ,ΨJ (m)) , θ) d (c,m, θ) .

For each principal j’s belief, we apply Bayes’rule if and only if she cannot confirm

that the other players have deviated from an equilibrium. Given (c, s) being played in an
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equilibrium, define B(c, s)
j as the set of principal j’valid beliefs. For every j ∈ J ,

B(c, s)
j ≡



bj : Γj (C)×Ψj (M)→ ∆ (C ×M ×Θ) such that

bj [Γj (c′) ,Ψj (m)] (Γj (c′)×Ψj (m)×Θ) = 1, ∀ (c′,m) ∈ C ×M ,


∀c′j ∈ Cj, ∀θ ∈ Θ,

set βj = Ψj

(
s
(
c′j, c−j, θ

))
, and we have

bj
[
Γj
(
c′j, c−j

)
, βj

] (
c′j, c−j, s

(
c′j, c−j, θ

)
, θ
)

= p(θ)∑
θ′′∈{θ′∈Θ: βj=Ψj(s(c′j ,c−j ,θ′))}

p(θ′′)





.

(5)

First,

bj [Γj (c′) ,Ψj (m)] (Γj (c′)×Ψj (m)×Θ) = 1, ∀ (c′,m) ∈ C ×M (6)

in (5) is the classic perfect recall condition. For instance, given perfect announcement, if

principal j observes c′ ∈ C at Stage 1, j must believe in c′ with probability 1 at Stage 3

(even on off-equilibrium paths).14

Second, we will adopt the solution concept of (weak) Perfect Bayesian equilibrium,

and hence, players will use Bayes’rule to update their beliefs whenever possible. As usual,

when one principal deviates unilaterally, she assumes that the other players follows the

equilibrium strategy profile. This is rigorously described in the set B(c, s)
j in (5). Specifically,

B(c, s)
j contains any belief function bj which satisfies the following condition. Given (c, s)

being played in an equilibrium, suppose principal j unilaterally deviates to c′j ∈ Cj. If j

observes Γj
(
c′j, c−j

)
(i.e., j cannot confirm that principals −j have deviated from (c, s)) and

observes βj = Ψj

(
s
(
c′j, c−j, θ

))
for some θ ∈ Θ (i.e., j cannot confirm that agents have

deviated from (c, s)), principal j believes that principals −j have offered c−j, and the agent
has followed s. As a result, the following set contains all possible states,{

θ′ ∈ Θ : βj = Ψj

(
s
(
c′j, c−j, θ

′))} ,
and by Bayes’rule, j’s updated belief is

bj
[
Γj
(
c′j, c−j

)
, βj

] (
c′j, c−j, s

(
c′j, c−j, θ

)
, θ
)

=
p (θ)∑

θ′′∈{θ′∈Θ: βj=Ψj(s(c′j ,c−j ,θ′))}
p (θ′′)

.

If principal j can confirm that either principals −j or the agent have deviated from
(c, s), we impose no requirement on bj ∈ B(c, s)

j , because this happens with probability 0 in

an equilibrium, and Bayes rule does not apply.
14If we do not impose the perfect recall condition, our results and proofs remain true.
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3.2.4 Perfect Bayesian equilibrium

For simplicity, we adopt the solution concept of pure-strategy perfect Bayesian equilibrium.

For simplicity, we just call it an equilibrium. Our results can be extended to mixed-strategy

equilibria (See Han and Xiong (2022)).

Definition 1 Given (C,M) in a model 〈A, Γ, Ψ〉, (c, s, t) ∈ C × S × T is a C-equilibrium
if

∃ (bk)k∈J ∈ ×k∈JB
(c, s)
k ,

such that (i) for every j ∈ J ,

Vj ((cj, c−j) , s, t) ≥ Vj
((
c′j, c−j

)
, s, t

)
, ∀c′j ∈ Cj,

and (ii) for every θ ∈ Θ,

U (c′, s, t, θ) ≥ U (c′, s′, t, θ) , ∀j ∈ J , ∀ (c′, s′) ∈ C × S,

and (iii) for every j ∈ J ,

Vj
(
tj, t−j|αj, βj, bj

)
≥ Vj

(
t′j, t−j|αj, βj, bj

)
, ∀t′j ∈ Tj, ∀

(
αj, βj

)
∈ Γj (C)×Ψj (M) .

Let E 〈A, Γ, Ψ〉-C denote the set of C-equilibria in the model 〈A, Γ, Ψ〉.

3.2.5 Allocation

Let Z ≡ ×k∈J [Zk : Θ→ Yk] denote the set of allocations. Given any (c, s, t) ∈ C × S × T ,
define z(c,s,t) : Θ→ Y as

z(c,s,t) (θ) =
[
z

(c,s,t)
k (θ)

]
k∈J

= [tk (ck, sk (c, θ))]k∈J , ∀θ ∈ Θ,

i.e., z(c,s,t) is the allocation induced by (c, s, t). Define

ZE
〈A, Γ, Ψ〉-C ≡

{
z(c,s,t) ∈ Z : (c, s, t) ∈ E 〈A, Γ, Ψ〉-C} , (7)

i.e., ZE
〈A, Γ, Ψ〉-C

is the set of all C-equilibrium allocations in the model 〈A, Γ, Ψ〉.

3.3 The primitive contract space and the goal

The primitive contract space isCA in Section 3.1, and our goal is a simple full characterization

of ZE
〈A, Γ, Ψ〉-CA

. Given A = Adelegated, the menu theorem in Peters (2001) has achieved this

goal, which will be reviewed in Section 4.1. Thus, givenA = Anon−delegated, we aim to provide
a simple full characterization of ZE

〈A, Γ, Ψ〉-CA
for each model 〈A, Γ, Ψ〉.
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4 The menu theorem in Peters (2001)

4.1 The menu theorem for delegated contracts

The menu theorem in Peters (2001) is established under delegated contracts, i.e., A =

Adelegated. A menu contract introduced in Peters (2001) is a function, cj : Ej → Yj, with

Ej ∈ 2Yj� {∅} and cj (yj) = yj, ∀yj ∈ Ej.

Let CP
j denote the set of all menu contracts for principal j, CP ≡ ×k∈JCP

k , and C
P
−j ≡

×k∈J�{j}CP
k . Let M

P
j ≡ Yj denote the set of messages used in all possible menus, MP ≡

×k∈JMP
k , and M

P
−j ≡ ×k∈J�{j}MP

k .

Theorem 1 (The menu Theorem, Peters (2001)) We have

ZE
〈Adelegated, Γ, Ψ〉-CAdelegated

= ZE
〈Adelegated, Γ, Ψ〉-CP

, ∀ 〈Γ, Ψ〉 ∈
{

Γprivate,Γpublic
}
×
{

Ψprivate,Ψpublic
}
.

(8)

With delegated contracts (i.e., A = Adelegated), the announcement and communication
structures do not have impact on equilibiria15.

The implication of Theorem 1 is that, given delegated contracts, it suffers no loss of

generality for principals to offer menus both on and off the equilibrium path. Since CP

is a much simpler set than CA, this result substantially simplifies the characterization of

equilibrium allocations.

4.2 Failure of the menu theorem for non-delegated contracts

(8) in Theorem 1 can be dissected into two parts:

ZE
〈Adelegated, Γ, Ψ〉-CAdelegated

⊃ ZE
〈Adelegated, Γ, Ψ〉-CP

and ZE
〈Adelegated, Γ, Ψ〉-CAdelegated

⊂ ZE
〈Adelegated, Γ, Ψ〉-CP

.

Does the menu theorem extends to non-delegated contracts, i.e., do the following hold?

15Different announcement and communication structures lead to different information for principals only

after they offer their contracts. With delegated contracts, principals do not make any strategic decision

after offerring their contracts, and hence, the information (induced by different the announcement and

communication structures) is irrelevant.
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ZE
〈Anon−delegated, Γ, Ψ〉-CAnon−delegated

⊃ ZE
〈Anon−delegated, Γ, Ψ〉-CP

, (9)

ZE
〈Anon−delegated, Γ, Ψ〉-CAnon−delegated

⊂ ZE
〈Anon−delegated, Γ, Ψ〉-CP

. (10)

Let us modify the example in Section 2 by deleting agents 2 and 3. In this examples,

principals offers menu contracts to agent 1, and for the equilibrium described in Section 2

(i.e. (T,H)), principal 1 achieves the max min value. However, it is straightforward to see

that, in any equilibrium with non-delegated contracts, principal 1 must achieve at least her

min max value. This shows failure of (9) regardless of 〈Γ, Ψ〉.

If (10) holds, we still have a weak sense of the menu theorem: ZE
〈Anon−delegated, Γ, Ψ〉-CP

serves as a superset of ZE
〈Anon−delegated, Γ, Ψ〉-CAnon−delegated

. With 〈Γprivate, Ψprivate〉, we will
prove (10) in Section 6 (i.e., Theorem 4).

In this section, we focus on
〈
Γpublic, Ψpublic

〉
and

〈
Γpublic, Ψprivate

〉
, and we use examples

to show failure of (10) in Sections 4.2.1 and 4.2.2, respectively. The example in Section 7.1

implies failure of (10) under
〈
Γprivate, Ψpublic

〉
.16

4.2.1 Public announcement and public communication

Given public announcement and public communication, consider the following example.

Θ =
{
θ1, θ4

}
, J = {j1, j2} , Yj1 = Yj2 = {1, 2, 3, 4} .

The common prior is p
(
θ1
)

= p
(
θ4
)

= 1/2. The preference is defined as follows.

vj1
[
(yj1 , yj2) , θ1

]
= vj2

[
(yj1 , yj2) , θ1

]
=


8, if (yj1 , yj2) = (1, 1),

1, if (yj1 , yj2) 6= (1, 1) and (yj1 + yj2) is even,

−1, if (yj1 + yj2) is odd,

vj1
[
(yj1 , yj2) , θ4

]
= vj2

[
(yj1 , yj2) , θ4

]
=


8, if (yj1 , yj2) = (4, 4),

1, if (yj1 , yj2) 6= (4, 4) and (yj1 + yj2) is even,

−1, if (yj1 + yj2) is odd,

u
[
(yj1 , yj2) , θ1

]
= u

[
(yj1 , yj2) , θ4

]
=

 1, if (yj1 , yj2) = (1, 4),

0, otherwise.
(11)

16The example in Section 7.1 shows a stronger point.
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For each j ∈ J , fix any two distinct messages, m1
j and m

4
j , and define a contract,

c∗j : MA
j → 2Yj as follows.

c∗j (mj) =


{1, 2}, if mj = m1

j ,

{3, 4}, if mj = m4
j ,

{3, 4}, otherwise

.

Consider the following equilibrium.

on the equilibrium path:

 principal j1 offers c∗j1 ,

principal j2 offers c∗j2 ,



on the equilibrium path:

 at state θ1 : the agent sends m1
j1
to j1 and m1

j2
to j2,

at state θ4 : the agent sends m4
j1
to j1 and m4

j2
to j2,


on the equilibrium path:

 the principals chooses (1, 1) , upon receiving
(
m1
j1
,m1

j2

)
,

the principals chooses (4, 4) , upon receiving
(
m4
j1
,m4

j2

)
.


On the equilibrium path, the induced outcome is (1, 1) at state θ1 and (4, 4) at state θ4, i.e.,

principals achieve their maximal utility at both states, and hence their incentive compatibility

at Stage 1 holds. To sustain this as an equilibrium, the agent and principals take the following

(behavior) strategies at Stages 2 and 3.

At Stage 2, the agent takes s ≡ [sk : CA ×Θ→MA
k ]k∈J such that

s (c, θ) =

 m, if ∃m ∈MA such that c (m) = {1} × {4} ,(
m1
j1
,m4

j2

)
, otherwise.

, ∀ (c, θ) ∈ CA ×Θ;

(12)

At Stage 3, j1 takes tj1 : CA ×MA → Yj1 and j2 takes tj2 : CA ×MA → Yj2 such that

c (m) = {1} × {4} ⇒ tj1 (c,m) = 1 and tj2 (c,m) = 4, (13)

and

c (m) 6= {1} × {4} ⇒ [tj1 (c,m) , tj2 (c,m)] ∈ arg max
(yj1 ,yj2)∈c(m)�{(1,4)}

vj1
[
(yj1 , yj2) , θ1

]
. (14)

Since principals have the same utility, they can coordinate their actions under public an-

nouncement and public communication. At Stage 3, if the agent’s message pins down prin-

cipals’ action profile as (1, 4), (13) says that principals would take (1, 4), and otherwise,
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(14) says that principals would believe the state is θ1 and take an optimal action profile in

c (m)� {(1, 4)}. As a result, incentive compatibility of principals at Stage 3 holds.

At Stage 2, (12) says that the agent would send a message to pin down {1} × {4}
for principals if such a message exists, and thus achieve his maximal utility. If there is no

message that can pin down {1}×{4} for principals, the agent is indifferent among all of the
messages, because in this case, by (14), principals would choose an action profile different

from (1, 4). By (11), the agent is indifferent between any action profiles in Y� {(1, 4)}.
Therefore, incentive compatibility of the agent at Stage 2 holds.

However, the equilibrium allocation described above cannot be replicated by menu

contracts. We prove this by contradiction. Suppose that we can do it. Then, we must get

(1, 1) at state θ1 and get (4, 4) at state θ4. Thus, both principals’equilibrium menu contracts

must include both 1 and 4. Then, (1, 1) cannot be achieved at state θ1, because the agent

would deviate to choose 1 from principal j1’s menu and 4 from principal j2’s menu, which

achieves the maximal utility for the agent at state θ1.

4.2.2 public announcement and private communication

In this subsection, we focus on public announcement and private communication with

Θ = {θ} , J = {j1, j2} , Yj1 = Yj2 = {0, 1} ,

i.e., it is a complete-information setup. Principals’preference are listed as follows.

(vj1 [(yj1 , yj2) , θ] , vj2 [(yj1 , yj2) , θ]) : yj2 = 0 yj2 = 1

yj1 = 0 0, 0 8,−8

yj1 = 1 0, 0 1, 1

Furthermore,

vj1 [(yj1 , yj2) , θ] = u [(yj1 , yj2) , θ] , ∀ [(yj1 , yj2) , θ] ∈ Yj1 × Yj2 ×Θ.

Fix any
(
m∗∗j1 ,m

∗∗
j2

)
∈MA

j1
×MA

j2
, and consider the following equilibrium.

on the equilibrium path:

 principal j1 offers c∗∗j1 : MA
j1
→ 2Yj1 with c∗∗j1 (mj1) = {1} , ∀mj1 ∈MA

j1

principal j2 offers c∗∗j2 : MA
j2
→ 2Yj2 with c∗∗j2 (mj2) = {0, 1} , ∀mj2 ∈MA

j2

 ,
on the equilibrium path:

 the agent sends m∗∗j1 to principal j1

the agent sends m∗∗j2 principal j2

 ,
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on the equilibrium path:

 principal j1 chooses 1 from the subset {1}
principal j2 chooses 1 from the subset {0, 1}

 .
To sustain this as an equilibrium, the agent follows the table below to send messages at

Stage 2, and principals also follow this table to play continuation equilibrium at Stage 3.

Ranking: 1 2 3 4

cj1 (mj1)× cj2 (mj2) = {0} × {1} {0, 1} × {1} {1} × {1} {1} × {0, 1}
continuation equilibrium at Stage 3 (0, 1) (0, 1) (1, 1) (1, 1)

vj1 = u = 8 8 1 1

5 6 7 8 9

{0, 1} × {0, 1} {0} × {0, 1} {0} × {0} {1} × {0} {0, 1} × {0}
(0, 0) (0, 0) (0, 0) (1, 0) (1, 0)

0 0 0 0 0

That is, there are 9 non-empty subsets of Yj1×Yj2 , and for each subset (listed at Row 2) that
is pinned down by the agent’s messages at Stage 3, we let principals play the corresponding

continuation (Nash) equilibrium (listed at Row 3). Row 4 lists the payoffs of these continu-

ation equilibria for the agent and principal j1. Furthermore, row 1 ranks these continuation

equilibria (and the corresponding subsets of Yj1 × Yj2), according to the agent’s payoffs (at
Row 4). Clearly, principals’incentive compatibility hold at Stage 3.

We say a contract profile (cj1 , cj2) is ranked n-th if and only if n is the smallest integer

such that there exists (mj1 ,mj2) and cj1 (mj1)× cj2 (mj2) is ranked n-th in the table above.

When principals offer a contract profile that is ranked n-th at Stage 1, we let the agent send

messages that induce the n-th ranked subsets of Yj1×Yj2 at Stage 2. As a result, the agent’s
incentive compatibility holds at Stage 2.

j2’s incentive compatibility also holds because she achieves the maximal utility on the

equilibrium path. Finally, suppose j1 unilaterally deviates from the equilibrium. Since j2’s

equilibrium contract leads only to {0, 1}, by the table above, the contract profile induced by
j1’s deviation can be ranked only lower, i.e., not a profitable deviation for j1.

However, the equilibrium allocation described above cannot be replicated by menu

contracts. We prove this by contradiction. Suppose that we can use menu contracts to

replicate it. On the equilibrium path, the principals choose (yj1 = 1, yj2 = 1). Thus, prin-

cipal j2’s equilibrium menu contract must contain 1. Then, principal j1 finds it profitable
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to deviate to the degenerate menu {0}, which would induce the continuation equilibrium
(yj1 = 0, yj2 = 1), i.e., both principal j1 and the agent achieve the highest utility, 8.

5 Simpler contract spaces than CA

5.1
[
CI , CII

]
-equilibrium and the goal

Given A = Anon−delegated, we follow the same strategy of Peters (2001) to characterize equi-
librium allocations. That is, we will identify two simple contract spaces, CI and CII , and

prove that it suffers no loss of generality for principals to focus on CI and CII , one for the

equilibrium path and the other for off-equilibrium paths. Thus, we first define a new notion

of
[
CI , CII

]
-equilibrium as follows.

Definition 2 Given two generic contract spaces, CI and CII , in a model 〈A, Γ, Ψ〉, (c, s, t) ∈
C × S × T is a

[
CI , CII

]
-equilibrium if c ∈ CI and (c, s, t) is a Ĉ-equilibrium, where

Ĉ ≡ ×k∈J Ĉk ≡ ×k∈J
(
{ck} ∪ CII

k

)
.

Let E 〈A, Γ, Ψ〉-[CI ,CII] be the set of all
[
CI , CII

]
-equilibria in the model 〈A, Γ, Ψ〉, and

ZE
〈A, Γ, Ψ〉-[CI,CII]

≡
{
z(c,s,t) ∈ Z : (c, s, t) ∈ E 〈A, Γ, Ψ〉-[CI ,CII]

}
.

It is straightforward to see E 〈A, Γ, Ψ〉-CA ≡ E 〈A, Γ, Ψ〉-[CA,CA]. Thus, for each model〈
Anon−delegated, Γ, Ψ

〉
, we aim to find the simple contract spaces, CI and CII , such that

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CI,CII]

.

We propose such simple contract spaces in Sections 5.2 and 5.3.

5.2 Menu-of-menu-with-recommendation contracts

Given j ∈ J , pick any Ej ∈ 2Yj� {∅}, and we say that [Ej, yj] is a menu with a recommen-

dation if and only if yj ∈ Ej. Define

MR
j ≡

{
[Ej, yj] : Ej ∈ 2Yj� {∅} and yj ∈ Ej

}
,

i.e., MR
j is the set of all menus with a recommendation. Let M

R ≡ ×k∈JMR
k .

18



Definition 3 A menu-of-menu-with-recommendation contract for principal j is a function,

cj : Kj → 2Yj� {∅} such that Kj ∈ 2M
R
j � {∅} and cj ([Ej, yj]) = Ej, ∀ [Ej, yj] ∈ Kj.

When the agent sends a message [Ej, yj] ∈ Kj, the interpretation is that he chooses the

menu of actions Ej along with recommending yj to principal j. Nonetheless, this recommen-

dation is not binding, and principal j can still choose any action in Ej. For example, suppose

that Kj = {[{a, b} , a] , [{c, d} , c] , [{e, f, g} , e] , [{e, f, g} , f ]} . Then, a menu-of-menu-with-
recommendation contract cj : Kj → 2Yj� {∅} has the following property:

cj ([{a, b} , a]) = {a, b} , cj ([{c, d} , c]) = {c, d} ,

cj ([{e, f, g} , e]) = cj [{e, f, g} , f ] = {e, f, g} .

Let CR
j be the set of all possible menu-of-menu-with-recommendation contracts for principal

j, CR ≡ ×k∈JCR
k and C

R
−j ≡ ×k 6=jCR

k .

5.3 Menu-of-menu-with-full-recommendation contracts

We now define another class of contracts. For any Ej ∈ 2Yj� {∅}, the following is a menu
of Ej with full recommendation.

{[Ej, yj] : yj ∈ Ej} .

For example, with Ej = {a, b, c}, a menu of {a, b, c} with full recommendation is

{[{a, b, c} , a] , [{a, b, c} , b] , [{a, b, c} , c]} .

Definition 4 A menu-of-menu-with-full-recommendation contract for principal j is a func-

tion, cj : Lj ∪Hj → 2Yj� {∅} with

Hj = {[Ej, yj] : yj ∈ Ej} for some Ej ∈ 2Yj� {∅} ,

Lj ⊂ 2Yj� {Ej} ,

such that

cj
(
E ′j
)

= E ′j, ∀E ′j ∈ Lj,

cj ([Ej, yj]) = Ej, ∀ [Ej, yj] ∈ Hj.
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Let CF
j denote the set of all menu-of-menu-with-full-recommendation contracts for prin-

cipal j, CF ≡ ×k∈JCF
k , and C

F
−j ≡ ×k∈J�{j}CF

k . LetM
F
j denote the set of all messages that

could possibly be included in the domain of a menu-of-menu-with-full-recommendation con-

tracts for principal j, i.e., MF
j = 2Yj ∪MR

j . Let M
F ≡ ×k∈JMF

k , and M
F
−j ≡ ×k∈J�{j}MF

k .

Let us illustrate the domain of a menu-of-menu-with-full-recommendation contract,

cj : Lj ∪ Hj → 2Yj� {∅}. The set Lj is a (possibly empty) subset of 2Yj , and Hj =

{[Ej, yj] : yj ∈ Ej} is a menu of Ej with full recommendation such that Ej is non-empty and
Ej /∈ Lj. For example,

Lj ∪Hj = {{a, b} , {c, d, e} , [{f, g, h} , f ] , [{f, g, h} , g] , [{f, g, h} , h]} ,

and we thus have:

cj ({a, b}) = {a, b} , cj ({c, d, e}) = {c, d, e} ,

cj ([{f, g, h} , f ]) = cj ([{f, g, h} , g]) = cj ([{f, g, h} , h]) = {f, g, h} .

The interpretation of cj is: principal j asks the agent to choose a subset in the menu of

menus {{a, b} , {c, d, e} , {f, g, h}}; the agent may choose {a, b}, or {c, d, e}, or {f, g, h}; if
and only if the agent chooses {f, g, h}, the agent must, in addition, recommend an action in
{f, g, h}, i.e., f or g or h. Nevertheless, the recommendation is not binding.

Any menu contract (as defined in Section 4.1), e.g., {a, b, c}, can be viewed as a
menu-of-menu-with-full-recommendation contract because we can set Lj = {{a} , {b}} and
Hj = {[{c}, c]}. Therefore, CP can be viewed as a strict subset of CF . Furthermore, given

any menu-of-menu-with-full-recommendation contract, cj : Lj ∪ Hj → 2Yj� {∅}, since a
recommendation is non-binding, for each Dj ∈ Lj, we can add an arbitrary recommendation
yj ∈ Dj. Thus, any menu-of-menu-with-full-recommendation contract can be viewed as a

menu-of-menu-with-recommendation contract, i.e.,

CP ( CF ( CR. (15)

6 Full Equilibrium characterization I

Given A = Anon−delegated, we focus on three models in this section: 〈Γprivate, Ψprivate〉 ,〈
Γpublic, Ψprivate

〉
and

〈
Γpublic, Ψpublic

〉
. We consider the model of

〈
Γprivate, Ψpublic

〉
in the

next section because it requires a different full characterization.

In the three models, there is no loss of generality to focus on
[
CR, CF

]
-equilibria.
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Theorem 2 Suppose A = Anon−delegated. We have

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CR,CF ]

, (16)

∀ 〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
.

To prove this theorem, we need two technical results.

Proposition 1 Suppose A = Anon−delegated. We have

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CR,CA]

,

∀ 〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
.

Proposition 2 Suppose A = Anon−delegated. Fix any I ∈ {A, P, F,R}. We have

ZE
〈A, Γ, Ψ〉-[CI,CA]

= ZE
〈A, Γ, Ψ〉-[CI,CF ]

,

∀ 〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
.

Proposition 1 says that it suffers no loss generality for principals to offer contracts in CR

on the equilibrium path, and Proposition 2 says that it suffers no loss generality for principals

to offer contracts in CF off the equilibrium paths. The proofs of the two propositions are

relegated to Appendix A.2 and A.3.

Proof of Theorem 2. Suppose A = Anon−delegated. Consider any

〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
.

Proposition 1 implies

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CR,CA]

, (17)

and Proposition 2 implies

ZE
〈A, Γ, Ψ〉-[CR,CA]

= ZE
〈A, Γ, Ψ〉-[CR,CF ]

. (18)

Finally, (17) and (18) imply (16). �

In the model of
〈
Anon−delegated, Γprivate, Ψprivate

〉
, the full characterization can be sharp-

ened as follows. The proof of Theorem 3 is relegated to Appendix A.4.

Theorem 3 Suppose 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψprivate

〉
. We have

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CP ,CF ]

. (19)
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Three remarks on Theorem 3 are in order. First, given
〈
Anon−delegated, Γprivate, Ψprivate

〉
,

Theorem 3 says that it suffers no loss of generality for principals to offer menu contracts

on the equilibrium path, which sharpens Theorem 2, due to CP ⊂ CR (in (15)). In this

sense, the menu theorem holds partially (i.e., on the equilibrium path), but the example in

Section 2 shows that it suffers loss of generality for principals to offer menu contracts on

off-equilibrium paths. Second, Theorem 3 applies only to
〈
Anon−delegated, Γprivate, Ψprivate

〉
,

but not to the other three models as shown by the examples in Sections 4.2 and 7.1. Third,

with A = Adelegated, the menu theorem (i.e., Theorem 1) says

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CP ,CP ]

,

i.e., ZE
〈A, Γ, Ψ〉-[CP ,CP ]

is both an upper bound and a lower bound for ZE
〈A, Γ, Ψ〉-[CA,CA]

. Given〈
Anon−delegated, Γprivate, Ψprivate

〉
, Theorem 4 shows that ZE

〈A, Γ, Ψ〉-[CP ,CP ]
remains an upper

bound, but the example in Section 2 shows that it is no longer a lower bound. This establishes

a second sense that the menu theorem holds partially given
〈
Anon−delegated, Γprivate, Ψprivate

〉
.

The proof of Theorem 4 is relegated to Appendix A.5.

Theorem 4 In the model 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψprivate

〉
, we have

ZE
〈A, Γ, Ψ〉-[CA,CA]

⊂ ZE
〈A, Γ, Ψ〉-[CP ,CP ]

.

7 Full equilibrium Characterization II

Throughout this section, we focus on
〈
Anon−delegated, Γprivate, Ψpublic

〉
. Theorem 2 shows

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CR,CF ]

(20)

for the other three models. Thus, it is natural to conjecture that (20) still holds under〈
Anon−delegated, Γprivate, Ψpublic

〉
. However, we use an example to disprove this in Section 7.1.

Furthermore, we provide a full characterization of ZE
〈A, Γ, Ψ〉-[CA,CA]

in Section 7.2.

7.1 A counterexample

To disprove (20), suppose that

Θ =
{
θ1, θ4

}
, J = {j1, j2} , Yj1 = Yj2 = {1, 2, 3, 4} .
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The common prior is p
(
θ1
)

= p
(
θ4
)

= 1/2. The preference is defined as follows.

vj1
[
(yj1 , yj2) , θ1

]
= vj2

[
(yj1 , yj2) , θ1

]
=


8, if (yj1 , yj2) = (1, 1);

9, if (yj1 , yj2) ∈ {(3, 1) , (4, 1)};
yj1 − yj2 + 4, if {yj1 , yj2} ⊂ {1, 2} or {yj1 , yj2} ⊂ {3, 4};
yj2 − yj1 , otherwise.

(21)

vj1
[
(yj1 , yj2) , θ4

]
= vj2

[
(yj1 , yj2) , θ4

]
=


8, if (yj1 , yj2) = (4, 4);

9, if (yj1 , yj2) ∈ {(4, 1) , (4, 2)};
yj1 − yj2 + 4, if {yj1 , yj2} ⊂ {1, 2} or {yj1 , yj2} ⊂ {3, 4};
yj2 − yj1 , otherwise.

(22)

u
[
(yj1 , yj2) , θ1

]
= u

[
(yj1 , yj2) , θ4

]
=

 1, if (yj1 , yj2) = (1, 4);

0, otherwise
(23)

For each j ∈ J , fix three distinct messages, m1
j , m

2
j and m

4
j . Define a contract, c

∗
j : MA

j →
2Yj :

c∗j (mj) =


{1, 2}, if mj = m1

j ,

{3, 4}, if mj = m4
j ,

{2}, if mj = m2
j ,

{2}, otherwise

.

Consider the following equilibrium.

on the equilibrium path:

 principal j1 offers c∗j1 ,

principal j2 offers c∗j2 ,



on the equilibrium path:

 at state θ1 : the agent sends m1
j1
to j1 and m1

j2
to j2,

at state θ4 : the agent sends m4
j1
to j1 and m4

j2
to j2,


on the equilibrium path:

 principals chooses (1, 1) , upon receiving
(
m1
j1
,m1

j2

)
,

principals chooses (4, 4) , upon receiving
(
m4
j1
,m4

j2

)
.


On the equilibrium path, the induced outcome is (1, 1) at state θ1 and (4, 4) at state θ4.

To sustain this as an equilibrium, the agent and principals take the following (behavior)

strategies at Stages 2 and 3.
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At stage 2, off the equilibrium path

the agent takes s ≡ [sk : CA ×Θ→MA
k ]k∈J such that

c [s (c, θ)] 6= {1} × {4} ⇒

 @m ∈MA such that c (m) = {1} × {4} ,
and s (c, θ) =

(
m2
j1
,m2

j2

)
 ,

∀ (c, θ) ∈
[
CA�

{(
c∗j1 , c

∗
j2

)}]
×Θ.

That is, we consider two cases: (1) if there exists m ∈MA such that c (m) = {1} × {4}, we
let the agent send m, which achieves the maximal utility for the agent; (2) otherwise, the

agent always sends
(
m2
j1
,m2

j2

)
. If there exists no m ∈ MA such that c (m) = {1} × {4}, as

will be clear, principals will never play (1, 4) at Stage 3, regardless the agent’s messages at

Stage 2. By (23), the agent’s incentive compatibility holds.

At Stage 3, let each principal j adopt the (behavior) strategy

tj : CAj ×MA
j ×MA

j → Yj,

and the corresponding beliefs described as follows. First, fix any j ∈ J , and suppose j
unilaterally deviates to cj 6= c∗j , and the agent sends

(
m2
j1
,m2

j2

)
at Stage 2. Then, principal j

cannot confirm deviation from the agent or the other principal. Thus, j must believe that the

other principal offers c∗−j at Stage 1, and there is equal probability for θ
1 and θ4. Given c∗−j,

the message m2
−j pins down the action of 2 for principal −j at Stage 3. Thus, let principal

j take the following action at Stage 3.

tj
[
cj,
(
m2
j1
,m2

j2

)]
∈ arg max

yj∈cj(m2
j)

(
1

2
vj
[
(yj, y−j = 2) , θ1

]
+

1

2
vj
[
(yj, y−j = 2) , θ4

])
.

Clearly, in this case, principals’ incentive compatibility holds at Stage 3. Furthermore,

by (21) and (22)), such a unilateral deviation would induce a payoff less than 8 (i.e., the

equilibrium payoff) at both states, i.e., this is not a profitable deviation.

Second, consider all of the other off-equilibrium paths. For each j ∈ J and each

yj ∈ Yj, let cyjj : MA
j → 2Yj denote the following degenerate contract.

c
yj
j (mj) = {yj} , ∀mj ∈MA

j .

Principal j1 takes tj1 : CAj1 ×MA
j1
×MA

j2
→ Yj1 such that

 (cj1 ,mj1 ,mj2) /∈
{(
c∗j1 ,m

1
j1
,m1

j2

)
,
(
c∗j1 ,m

4
j1
,m4

j2

)}
,

or (cj1 ,mj1 ,mj2) /∈
(
CAj1�

{
c∗j1
})
×
{(
m2
j1
,m2

j2

)}
⇒


tj1 (cj1 ,mj1 ,mj2) = max cj1 (mj1) ≡ ŷ,

j1 believes
[
θ = θ1 and cj2 = cŷj2

]
with probability 1

 ,
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and Principal j2 takes tj2 : CAj2 ×MA
j1
×MA

j2
→ Yj2 such that (cj2 ,mj1 ,mj2) /∈

{(
c∗j2 ,m

1
j1
,m1

j2

)
,
(
c∗j2 ,m

4
j1
,m4

j2

)}
,

or (cj2 ,mj1 ,mj2) /∈
(
CAj1�

{
c∗j1
})
×
{(
m2
j1
,m2

j2

)}
⇒


tj2 (cj2 ,mj1 ,mj2) = min cj2 (mj2) ≡ ỹ,

j2 believes
[
θ = θ4 and cj1 = cỹj1

]
with probability 1

 .
It is easy to check that principals’incentive compatibility at Stage 3 holds.

However, this equilibrium allocation cannot be replicated as an equilibrium allocation

in the
[
CR, CF

]
game. We prove by contradiction. Suppose we can achieve the allocation

with a
[
CR, CF

]
-equilibrium. Let us focus on the equilibrium path. At State θ1, the agent

chooses Eθ1

j1
for j1 and Eθ1

j2
for j2, and at State θ

4, the agent chooses Eθ4

j1
for j1 and Eθ4

j2
for

j2. Since it implements (1, 1) at θ1 and (4, 4) at θ4, we have

1 ∈ Eθ1

j1
and 4 ∈ Eθ4

j2
.

At state θ1, on the equilibrium path, principal j1 expects that j2 would choose 1 at Stage 3.

By the preference of j1 (i.e., (21)), we have

{3, 4} ∩ Eθ1

j1
= ∅.

Similarly, at state θ4, on the equilibrium path, principal j2 expects that j1 would choose 4

at Stage 3. By the preference of j1 (i.e., (22)), we have

{1, 2} ∩ Eθ4

j2
= ∅.

That is,

1 ∈ Eθ1

j1
⊂ {1, 2} and 4 ∈ Eθ4

j2
⊂ {3, 4} .

Then, at State θ1 (also at θ4), the agent finds it profitable to deviate to choose
(
Eθ1

j1
, Eθ4

j2

)
for the principals. Upon observing this, the dominant strategy for principal j1 is to choose

1 and the dominant strategy for principal j2 is to choose 4. That is, the principals chooses

(1, 4), which is strictly better than the equilibrium allocation (1, 1) for the agent.

The key point is as follows. When principal j offers a contract in CAj , the other prin-

cipals may not correctly infer the subset of actions available for j conditional on the agent’s

message to j under private announcement and public communication. However, if principal

j is restricted to offer a contract in CR
j or C

F
j , the agent’s message to j alone fully reveals

the subset of actions available for j under private announcement and public communica-

tion. This can create a profitable deviation for the agent at Stage 2 on the equilibrium path

such that it induces a unique profile of equilibrium action choices by principals at Stage

3, which makes the agent strictly better off, preventing the intended equilibrium allocation

from happening.
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7.2 A full characterization

Nevertheless, the menu-of-menu-with-recommendation theorem can be easily adapted in〈
Anon−delegated, Γprivate, Ψpublic

〉
. For each j ∈ J , let MR−F

j be the set of messages that

are used contracts in CR
j ∪ CF

j . For each yj ∈ Yj, let c
yj
j : MR−F

j → 2Yj� {∅} denote the
following degenerate contract.

c
yj
j (mj) = {yj} , ∀mj ∈MR−F

j . (24)

Define

CF ∗ ≡ ×j∈JCF ∗

j ≡ ×j∈J
[
CF
j ∪

{
c
yj
j : yj ∈ Yj

}]
.

Note that degenerate contracts are designed in a way so that adding such contracts pre-

vents principals from correctly inferring the subset of actions available for each principal j

conditional on the agent’s message to j.

Theorem 5 Given 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψpublic

〉
, we have

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CR,CF

∗
]
.

The proof of Theorem 5 is relegated to Han and Xiong (2022).

8 Common agency with imperfect commitment

In this section, we adapt our model to describe imperfect commitment à la Bester and

Strausz (2000, 2001, 2007). In order to achieve this, we just need to make three changes

to the model in Section 3. First, for each j ∈ J , assume Yj = Y 1
j × Y 2

j . Second, for each

j ∈ J , there is an exogenous function φj : Y 1
j −→ 2Y

2
j � {∅}. Third, a contract of principal

j is cj : MA
j −→ Y 1

j . Let C̃
A
j ≡

(
Y 1
j

)MAj denote j’s contract space, and C̃A =
(
C̃Aj

)
j∈J
.

In this game, we follow the same timeline in Section 3.2.1: each principal j simultaneously

offers cj ∈ C̃Aj at Stage 1; the agent sends mj ∈ MA
j to each principal j at Stage 2, which

pins down the action cj (mj) ∈ Y 1
j and the subset φj [cj (mj)] ∈ 2Y

2
j � {∅} for principal j; at

Stage 3, each principal j simultaneously takes an action
(
cj (mj) , y

2
j ∈ φj [cj (mj)]

)
.

In fact, the model in Section 3 can be viewed as a special case of the model with imper-

fect commitment. Though Yj in our model in Section 3 may not be directly decomposed to

contractible and non-contractible components, we can define a new action space for principal
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j as follows.

Ỹ 1
j = 2Yj� {∅} , Ỹ 2

j = Yj, Ỹj = Ỹ 1
j × Ỹ 2

j ,

φ̃j
(
y1
j

)
= y1

j , ∀y1
j ∈ Ỹ 1

j .

Thus, the common-agency-with-imperfect-commitment model17 with
(
Ỹj, φ̃j

)
j∈J

is equiva-

lent to the model in Section 3.18

Theorem 2 can be easily extended to a common-agency-with-imperfect-commitment

model with
(
Yj = Y 1

j × Y 2
j , φj

)
j∈J . Consider Ξj ≡

{(
y1
j , y

2
j

)
: y1

j ∈ Y 1
j and y

2
j ∈ φj

(
y1
j

)}
.

In this setup, a menu-of-menu-with-recommendation contract is represented by a non-empty

subset Ej ∈ 2Ξj� {∅}, or more precisely, the contract, cj : Ej −→ Y 1
j such that cj

(
y1
j , y

2
j

)
≡

y1
j . The interpretation is that, the message

(
y1
j , y

2
j

)
pins down y1

j ∈ Y 1
j and φj

(
y1
j

)
⊂ Y 2

j ,

and the agent recommends y2
j ∈ φj

(
y1
j

)
for Stage 3. Let C̃R

j denote the set of j’s menu-of-

menu-with recommendation contracts, and C̃R ≡
(
C̃R
j

)
j∈J
.

Furthermore, consider Σj ≡
{{(

y1
j , y

2
j

)
: y2

j ∈ φj
(
y1
j

)}
: y1

j ∈ Y 1
j

}
. A menu-of-menu-

with-full-recommendation contract is represented by a subset Lj ∈ 2Y
1
j and an element

Hj ∈ Σj, or more precisely, the contract, cj : Lj ∪Hj −→ Y 1
j such that

cj
(
y1
j

)
= y1

j , ∀y1
j ∈ Lj and cj

(
y1
j , y

2
j

)
= y1

j , ∀
(
y1
j , y

2
j

)
∈ Hj.

Let C̃F
j denote the set of j’s menu-of-menu-with-full-recommendation contracts, and C̃

F ≡

17In this model, principals’and the agent’s utility depends only on
(
Ỹ 2j

)
j∈J

but not on
(
Ỹ 1j

)
j∈J

.
18One superficial difference between the model in Section 3 and the model with imperfect commitment

is that the degree of principals’commitment is endogenous in the former, but seems exogenous in the latter

(as described by the exogenous φj). In fact, φj can accommodate endogenous commitment. To see this, take

Yj = Y 1j × Y 2j as principal j’s underlying action space. Conditional on choosing y1j , let zj
(
y1j
)
⊂ 2Y

2
j � {∅}

denote the set of subsets of Y 2j to which principal j can commit for Stage 3. If zj
(
y1j
)
= 2Y

2
j � {∅} for every

y1j ∈ Y 1j , principal j’s commitment is fully endogenous, and if
∣∣zj (y1j )∣∣ = 1 for every y1j ∈ Y 1j , principal j’s

commitment is fully exogenous. φj can describe any zj by changing the action space as follows.

Ŷ 1j =
{(
y1j , P

2
j

)
: y1j ∈ Y 1j and P 2j ∈ zj

(
y1j
)}
, Ŷj = Ŷ 1j × Y 2j ,

φ̂j
(
y1j , P

2
j

)
= P 2j , ∀

(
y1j , P

2
j

)
∈ Ŷ 1j .

Thus, by picking different zj , the common-agency-with-imperect-commitment model with
(
Ŷj , φ̂j

)
j∈J

can

describe fully exogenous commitment, or fully endogenous commitment, or any intermediate ones.

27



(
C̃F
j

)
j∈J
. Then, following a similar argument, it is straightforward to prove

ZE
〈A, Γ, Ψ〉-[C̃A,C̃A]

= ZE
〈A, Γ, Ψ〉-[C̃R,C̃F ]

,

∀ 〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
.

9 Conclusion

The revelation principle is a pillar in mechanism design, and a fundamental question is: what

are the indispensable assumptions on which the revelation principle hinges? This classical

question has been answered by various papers, e.g., Myerson (1979), McAfee (1993), Bester

and Strausz (2001), Pavan, Segal, and Toikka (2014), Doval and Skreta (2021).

In common-agency models, the menu theorem is the counterpart of the revelation

principle. What are the indispensable assumptions on which the menu theorem hinges? To

the best of our knowledge, this paper is the first one to study this question. Not only do we

identify two indispensable assumptions (i.e., delegated contracts and perfect commitment),

we also show how the menu theorem should be modified when such assumptions fail.

A Proofs

A.1 Extended contracts

For each j ∈ J , we say a contract c′j : M ′
j −→ 2Yj� {∅} is an extension of another c′′j :

M ′′
j −→ 2Yj� {∅} (denoted by c′j ≥ c′′j ) if and only if there exists a surjective function

ιj : M ′
j −→M ′′

j such that

c′j (mj) = c′′j (ιj (mj)) , ∀mj ∈M ′
j,

Based on "≥," we define two binary relations. First, for any I, II ∈ {A, P, F,R}, define

CI A∗ CII ⇐⇒

 ∀j ∈ J , ∀c′′j ∈ CII
j ,

∃c′j ∈ CI
j , c

′
j ≥ c′′j

 .
Clearly, CA A∗ CR A∗ CF A∗ CP . Second, for any I, II ∈ {A, P, F,R}, define

CI A∗∗ CII ⇐⇒

 ∀j ∈ J , ∀c′j ∈ CI
j ,

∃c′′j ∈ CII
j , c

′
j ≥ c′′j

 .
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Clearly, CA A∗∗ CF and CP A∗∗ CF , but "CI A∗∗ CP" fails for each I ∈ {A, F, R}.

Lemma 1 For any I, II, III ∈ {A, P, F, F ∗, R}, we have

CI A∗ CIII =⇒ ZE
〈A, Γ, Ψ〉-[CI,CII]

⊃ ZE
〈A, Γ, Ψ〉-[CIII ,CII]

,

∀ 〈Γ, Ψ〉 ∈
{

Γprivate, Γpublic
}
×
{

Ψprivate, Ψpublic
}
.

Lemma 2 For any I, II, IV ∈ {A, P, F,R}, we have

CII A∗∗ CIV =⇒ ZE
〈A, Γ, Ψ〉-[CI,CII]

⊃ ZE
〈A, Γ, Ψ〉-[CI,CIV ]

,

∀ 〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
.

A.1.1 Proof of Lemma 1

Fix any I, II, III ∈ {A, P, F,R}. Let M I , M II and M III denote the message spaces for

CI , CII and CIII , respectively. Fix any (c, s, t) ∈ E 〈A, Γ, Ψ〉-[CIII ,CII]. We aim to construct a[
CI , CII

]
-equilibrium that induces the allocation z(c,s,t).

Since CI A∗ CIII , there exits c(c,s,t) ∈ CI such that c(c,s,t)
j ≥ cj for every j ∈ J , and as

a result, there exists a surjective function ιj : M I
j −→M III

j such that

c
(c,s,t)
j (mj) = cj (ιj (mj)) , ∀mj ∈M I

j .

We will replicate (c, s, t) with
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
∈ E 〈A, Γ, Ψ〉-[CI ,CII] in two steps. First,

with abuse of notation, let ι−1
j : M III

j −→M I
j denote any injective function such that

c
(c,s,t)
j

(
ι−1
j (mj)

)
= cj (mj) , ∀mj ∈M III

j . (25)

Consider the contract ĉ(c,s,t)
j : ι−1

j

(
M III

j

)
−→ 2Yj� {∅} with the restricted domain ι−1

j

(
M III

j

)
:

ĉ
(c,s,t)
j (mj) = c

(c,s,t)
j (mj) , ∀mj ∈ ι−1

j

(
M III

j

)
,

which, together with (25), implies

ĉ
(c,s,t)
j (mj) = cj (ιj (mj)) , ∀mj ∈ ι−1

j

(
M III

j

)
,

or equivalently, ĉ(c,s,t)
j

(
ι−1
j (mj)

)
= cj (mj) , ∀mj ∈M III

j ,

That is, each ĉ
(c,s,t)
j is the same as cj, where each message mj ∈ M III

j for the latter is

translated to ι−1
j (mj) ∈ ι−1

j

(
M III

j

)
for the former. Denote ĉ(c,s,t) ≡

(
ĉ

(c,s,t)
j

)
j∈J
. We will
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construct an equilibrium
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
. However, ĉ(c,s,t) /∈ CI , and in the second step

below, we extend
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
to
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
∈ E 〈A, Γ, Ψ〉-[CI ,CII].

Replicating s with s(c,s,t):

For each j ∈ J , define the bijection, ηj :

{
ĉ

(c,s,t)
j

}
∪ CII

j −→ {cj} ∪ CII
j as follows.

ηj
(
c′j
)
≡


cj, if c′j = ĉ

(c,s,t)
j ;

c′j, if c′j ∈ CII
j �

{
ĉ

(c,s,t)
j

}
,

i.e., we identify ĉ(c,s,t)
j with cj. Define

s
(c,s,t)
j

(
(c′k)k∈J , θ

)
≡


ι−1
j

(
sj
[
(ηk (c′k))k∈J , θ

])
, if c′j = ĉ

(c,s,t)
j ;

sj
[
(ηk (c′k))k∈J , θ

]
, if c′j ∈ CII

j �
{
ĉ

(c,s,t)
j

}
.

That is, s(c,s,t)
j replicates sj: the agent identifies (c′k)k∈J with (ηk (c′k))k∈J , and follow sj to

send the message sj
[
(ηk (c′k))k∈J , θ

]
when c′j ∈ CII

j �
{
ĉ

(c,s,t)
j

}
; the message is re-labeled

to ι−1
j

(
sj
[
(ηk (c′k))k∈J , θ

])
when c′j = ĉ

(c,s,t)
j .

Replicating t with t̂(c,s,t):

For each (c′k)k∈J and each j ∈ J , define ξ(
c′k)k∈J
j : M I

j ∪M II
j −→M III

j ∪M II
j :

ξ
(c′k)k∈J
j (mj) =


ιj (mj) if c′j = ĉ

(c,s,t)
j ;

mj if c′j ∈ CII
j �

{
ĉ

(c,s,t)
j

}
.

That is, ξ
(c′k)k∈J
j (mj) re-labelmj if and only if c′j = ĉ

(c,s,t)
j . Denote ξ(c

′
k)k∈J ≡

(
ξ
(c′k)k∈J
j

)
j∈J
.

For each j ∈ J , define

t̂
(c,s,t)
j

(
Γj
(
(c′k)k∈J

)
,Ψj (m)

)
= tj

(
Γj
(
(ηk (c′k))k∈J

)
,Ψj

(
ξ(
c′k)k∈J (m)

))
,

i.e., t̂(c,s,t)j replicates tj subject to re-labeling of the messages (by ξ
(c′k)k∈J
j ).

Clearly,
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
is the "same" as (c, s, t) subject to re-labeling of the

messages. Similarly, we can transform the principals’beliefs at Stage 3 for (c, s, t) to their

beliefs, denoted by b̂(c,s,t), for
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
subject to re-labeling of the messages.
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Therefore,
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
is an equilibrium. The only problem is ĉ(c,s,t) /∈ CI . We now

extend
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
to
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
∈ E 〈A, Γ, Ψ〉-[CI ,CII].

Extending
(
t̂(c,s,t), b̂(c,s,t)

)
to
(
t(c,s,t), b(c,s,t)

)
:

For each j ∈ J , define ϕj :
({
c

(c,s,t)
j

}
∪ CII

j

)
−→

({
ĉ

(c,s,t)
j

}
∪ CII

j

)
as

ϕj
(
c′j
)

=

 ĉ
(c,s,t)
j if c′j = c

(c,s,t)
j ;

c′j if c′j ∈ CII
j �

{
c

(c,s,t)
j

}
.

I.e., ϕj re-label c
′
j to ĉ

(c,s,t)
j if and only if c′j = c

(c,s,t)
j .

For each j ∈ J and each (c′k)k∈J , define π
(c′k)k∈J
j : M I

j ∪M II
j −→M I

j ∪M II
j as

π
(c′k)k∈J
j (mj) =

 mj if c′j ∈ CII
j �

{
c

(c,s,t)
j

}
;

ι−1
j (ιj (mj)) if c′j = c

(c,s,t)
j .

That is, π
(c′k)k∈J
j (mj) re-labels mj to ι−1

j (ιj (mj)) ∈ ι−1
j

(
M III

j

)
if and only if c′j = c

(c,s,t)
j .19

Denote π(c′k)k∈J ≡
(
π

(c′k)k∈J
j

)
j∈J
. For each j ∈ J , define

t
(c,s,t)
j

(
Γj
(
(c′k)k∈J

)
,Ψj (m)

)
≡ t̂

(c,s,t)
j

(
Γj
(
ϕk (c′k)k∈J

)
,Ψj

(
π(c′k)k∈J (m)

))
,

i.e., t(c,s,t)j replicates t̂(c,s,t)j subject to identifying eachmj ∈M I
j�ι−1

j

(
M III

j

)
with ι−1

j (ιj (mj)).

Similarly, define beliefs as follows.

b
(c,s,t)
j

(
Γj
(
(c′k)k∈J

)
,Ψj (m)

)
≡ b̂

(c,s,t)
j

(
Γj
(
ϕk (c′k)k∈J

)
,Ψj

(
π(c′k)k∈J (m)

))
.

Clearly,
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
replicates

(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
, and principals and the agent

inherit incentive compatibility. Note that, upon receiving c(c,s,t)
j from principal j, the agent

does not find it profitable to deviate to sending messages inM I
j�ι−1

j

(
M III

j

)
, because sending

mj ∈ M I
j�ι−1

j

(
M III

j

)
is equivalent to sending ι−1

j (ιj (mj)) ∈ ι−1
j

(
M III

j

)
, which is not a

profitable deviation in the equilibrium
(
ĉ(c,s,t), s(c,s,t), t̂(c,s,t)

)
. Finally, all of the argument

above works for any 〈Γ, Ψ〉 ∈
{

Γprivate, Γpublic
}
×
{

Ψprivate, Ψpublic
}
.�

19c
(c,s,t)
j (mj) = c

(c,s,t)
j

(
ι−1j (ιj (mj))

)
for every mj ∈ M I

j , i.e., mj and ι
−1
j (ιj (mj)) pin down the same

subset of actions under the contract c(c,s,t)j .

31



A.1.2 Proof of Lemma 2

Fix any I, II, IV ∈ {A, P, F,R}. Let M I , M II and M IV denote the message spaces for

CII , CII and CIV , respectively. Fix any (c, s, t) ∈ E 〈A, Γ, Ψ〉-[CI ,CIV ]. We aim to construct a[
CI , CII

]
-equilibrium that induces z(c,s,t).

Since CII A∗∗ CIV , there exists a function ψj : CII
j −→ CIV

j for each j ∈ J such that

c′j ≥ ψj
(
c′j
)
, ∀c′j ∈ CII

j .

Thus, for each c′j ∈ CII
j , there exists a surjective ι

c′j
j : M II

j −→M IV
j such that

c′j (mj) = ψj
(
c′j
) (
ι
c′j
j (mj)

)
, ∀mj ∈M II

j .

As in Appendix A.1.1, let
(
ι
c′j
j

)−1

: M IV
j −→M II

j denote any injective function such that

c′j

((
ι
c′j
j

)−1

(mj)

)
= ψj

(
c′j
)

(mj) , ∀mj ∈M IV
j .

Consider the contract ĉ′j :
(
ι
c′j
j

)−1 (
M IV

j

)
−→ 2Yj� {∅} with the restricted domain:

ĉ′j (mj) = c′j (mj) , ∀mj ∈
(
ι
c′j
j

)−1 (
M IV

j

)
,

i.e., each ĉ′j is the same as ψj
(
c′j
)
, where each message mj ∈M IV

j for the latter is translated

to
(
ι
c′j
j

)−1

(mj) ∈
(
ι
c′j
j

)−1 (
M IV

j

)
for the former. Denote ĉ′ ≡

(
ĉ′j

)
j∈J
. Define

ĈII
j ≡

{
ĉ′j : c′j ∈ CII

j

}
, ∀j ∈ J and ĈII ≡ ×j∈J ĈII

j .

Clearly, we have ZE
〈A, Γ, Ψ〉-[CI,ĈII] ⊃ ZE

〈A, Γ, Ψ〉-[CI,CIV ]
, i.e., we can replicate any (c, s, t) ∈

E 〈A, Γ, Ψ〉-[CIII ,CII] with some
(
c, ŝ, t̂

)
∈ E 〈A, Γ, Ψ〉-[CI ,ĈII], which summarizes the re-labeling of

messages (i.e.,
(
ι
c′j
j

)−1

) as in Appendix A.1.1.

As in Appendix A.1.1, we can extend each ĉ′j ∈ ĈII
j to c′j ∈ CII

j . The difference between

ĉ′j and c
′
j is that the agent cannot send messages in M

II
j �

(
ι
c′j
j

)−1 (
M IV

j

)
under ĉ′j, while he

can under c′j. Suppose principal j identify each mj ∈M II
j �

(
ι
c′j
j

)−1 (
M IV

j

)
with(

ι
c′j
j

)−1 [
ι
c′j
j (mj)

]
∈
(
ι
c′j
j

)−1 (
M IV

j

)
,

and then replicate t̂. Given this, the agent does not have incentive to send any message

mj ∈M II
j �

(
ι
c′j
j

)−1 (
M IV

j

)
, because sendingmj is equivalent to sending

(
ι
c′j
j

)−1 [
ι
c′j
j (mj)

]
∈(

ι
c′j
j

)−1 (
M IV

j

)
. Rigorously,
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Extending
(
t̂, b̂
)
to (t∗, b∗):

For each j ∈ J , define ϕj :
(
{cj} ∪ CII

j

)
−→

(
{cj} ∪ ĈII

j

)
,

ϕj
(
c′j
)

=

 cj if c′j = cj;

ĉ′j if c′j ∈ CII
j � {cj}.

For each j ∈ J and each (c′k)k∈J , define π
(c′k)k∈J
j : M I

j ∪M II
j −→M I

j ∪M II
j :

π
(c′k)k∈J
j (mj) =

 mj if c′j = cj;(
ι
c′j
j

)−1 [
ι
c′j
j (mj)

]
if c′j ∈ CII

j � {cj}.

For each j ∈ J , define

t∗j
(
Γj
(
(c′k)k∈J

)
,Ψj (m)

)
≡ t̂j

(
Γj
(
ϕk (c′k)k∈J

)
,Ψj

(
π(c′k)k∈J (m)

))
,

b∗j
(
Γj
(
(c′k)k∈J

)
,Ψj (m)

)
≡ b̂j

(
Γj
(
ϕk (c′k)k∈J

)
,Ψj

(
π(c′k)k∈J (m)

))
.

Therefore, (c, ŝ, t∗) ∈ E 〈A, Γ, Ψ〉-[CI ,CII] replicates (c, s, t) ∈ E 〈A, Γ, Ψ〉-[CI ,CIV ].�

A.2 Proof of Proposition 1

We need the following lemmas to prove Proposition 1, and the proofs are relegated to Ap-

pendix A.2.1 and A.2.2.

Lemma 3 Given 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψprivate

〉
, we have

ZE
〈A, Γ, Ψ〉-[CA,CA]

⊂ ZE
〈A, Γ, Ψ〉-[CP ,CA]

.

Lemma 4 Given A = Anon−delegated, we have

ZE
〈A, Γ, Ψ〉-[CA,CA]

⊂ ZE
〈A, Γ, Ψ〉-[CR,CA]

,

∀ 〈Γ, Ψ〉 ∈
{〈

Γpublic,Ψprivate
〉
,
〈
Γpublic,Ψpublic

〉}
.

Proof of Proposition 1. Given A = Anon−delegated, Lemma 1 and CA A∗ CR A∗ CP imply

ZE
〈A, Γ, Ψ〉-[CA,CA]

⊃ ZE
〈A, Γ, Ψ〉-[CR,CA]

⊃ ZE
〈A, Γ, Ψ〉-[CP ,CA]

,

∀ 〈Γ, Ψ〉 ∈
{〈

Γprivate,Ψprivate
〉
,
〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
,

which, together with Lemmas 3 and 4, implies Proposition 1.�
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A.2.1 Proof of Lemma 3

Fix 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψprivate

〉
. Fix any (c, s, t) ∈ E 〈A, Γ, Ψ〉-[CA,CA]. We

aim to replicate (c, s, t) with a
[
CP , CA

]
-equilibrium that induces the allocation z(c,s,t).

Replicating c with c(c,s,t) ∈ CP :

On the equilibrium path, for each j ∈ J , offering cj is equivalent to offering the menu
contract, c(c,s,t)

j : M
(c,s,t)
j −→ 2Yj� {∅} with

M
(c,s,t)
j ≡

{
tj
[
Γj
((
cj, c

′
−j
))
,Ψj

(
s
((
cj, c

′
−j
)
, θ
))]

:
(
c′−j, θ

)
∈ CA−j ×Θ

}
,

c
(c,s,t)
j (yj) = yj, ∀yj ∈M (c,s,t)

j .

Given
((
cj, c

′
−j
)
, θ
)
∈ CA×Θ, if all players follow (s, t), the subset Ej = cj

[
sj
((
cj, c

′
−j
)
, θ
)]

is pinned down for j at Stage 2, and j takes the action yj = tj
[
Γj
((
cj, c

′
−j
))
,Ψj

(
s
((
cj, c

′
−j
)
, θ
))]

at Stage 3. M (c,s,t)
j is the set of all such yj = tj

[
Γj
((
cj, c

′
−j
))
,Ψj

(
s
((
cj, c

′
−j
)
, θ
))]
.

In the
[
CA, CA

]
-game, CA and MA are the contract space and the message space,

respectively. Define c(c,s,t) ≡
(
c

(c,s,t)
k

)
k∈J
∈ CP and let

Ĉ ≡ ×k∈J Ĉk ≡ ×k∈J
({
c

(c,s,t)
k

}
∪ CAk

)
,

M̂ ≡ ×k∈J M̂k ≡ ×k∈J
(
M

(c,s,t)
k ∪MA

k

)
denote the relevant contract space and message space in the

[
CP , CA

]
-game.

Replicating s ≡ (sk)k∈J with s
(c,s,t) ≡

(
s

(c,s,t)
k

)
k∈J

:

When the agent observes c(c,s,t)
k in the

[
CP , CA

]
-game, he interprets it as ck in the[

CA, CA
]
-game, due to the replication process above. Also, when the agent observes c′j ∈ CAj

in the
[
CP , CA

]
-game, he interprets it as c′j ∈ CAj in the

[
CA, CA

]
-game. To record this

interpretation, define γj : Ĉj −→ CAj for each j ∈ J as

γj (ĉj) ≡

 cj, if ĉj = c
(c,s,t)
j ;

ĉj, if ĉj ∈ CAj ,

and denote γ (ĉ) ≡
(
[γk (ĉk)]k∈J

)
∈ CA for all ĉ = (ĉk)k∈J ∈ Ĉ.

For the agent’s strategy in the
[
CP , CA

]
-game, we replicate s ≡ (sk)k∈J with s

(c,s,t) ≡(
s

(c,s,t)
k

)
defined as follows. For each j ∈ J and each (ĉ, θ) ∈ Ĉ ×Θ,

s
(c,s,t)
j (ĉ, θ) =

 sj [γ (ĉ) , θ], if ĉj ∈ CAj ;
tj (Γj (γ (ĉ)) ,Ψj [s (γ (ĉ) , θ)]), if ĉj = c

(c,s,t)
j .
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When principals offer ĉ at Stage 1 in the
[
CP , CA

]
-game, the agent regards it as γ (ĉ) in

the
[
CA, CA

]
-game. Given γ (ĉ) in the

[
CA, CA

]
-game, the agent sends sj [γ (ĉ) , θ] to j

at Stage 2, and at Stage 3, j would choose the action tj (Γj (γ (ĉ)) ,Ψj [s (γ (ĉ) , θ)]). Then,

in the
[
CP , CA

]
-game, s(c,s,t)

j replicates sj: if ĉj ∈ CAj , the agent sends sj [γ (ĉ) , θ] to j; if

ĉj = c
(c,s,t)
j ∈ CP

j , the agent chooses the action

tj (Γj (γ (ĉ)) ,Ψj [s (γ (ĉ) , θ)]) ∈ c(c,s,t)
j .

Replicating (bj, tj) with
(
b

(c,s,t)
j , t

(c,s,t)
j

)
:

For each j ∈ J , consider

Qj ≡
{

[Γj (ĉ) ,Ψj (m̂)] : ĉ ∈ Ĉ and m̂ ∈ M̂
}
,

Q∗j ≡
{

[Γj (ĉ) ,Ψj (m̂)] ∈ Qj : ĉj = c
(c,s,t)
j

}
,

Q∗∗j ≡
{[

Γj (ĉ) ,Ψj

(
s(c,s,t) [ĉ, θ]

)]
∈ Qj : ĉj ∈ CAj , ĉ−j = c

(c,s,t)
−j and θ ∈ Θ

}
,

i.e., in the
[
CP , CA

]
-game, Qj is the set of all possible information that principal j may

observe before j takes an action at Stage 3; Q∗j is the subset of information with which

principal j offers the menu contract c(c,s,t)
j ; Q∗∗j is the subset of information with which

principal j offers ĉj ∈ CAj and cannot confirm that the other players have deviated.

First, when principal j observes [Γj (ĉ) ,Ψj (m̂)] ∈ Q∗j , we have ĉj = c
(c,s,t)
j , which is

a menu contract (i.e., a delegated contract). As a result, j’s decision at Stage 3 is de-

generate and the belief is irrelevant. Second, when principal j observes [Γj (ĉ) ,Ψj (m̂)] ∈
Qj�

(
Q∗j ∪Q∗∗j

)
, principal j is on an off-equilibrium path and c′j ∈ CAj . Define

t
(c,s,t)
j [Γj (ĉ) ,Ψj (m̂)] ≡ tj [Γj (ĉ) ,Ψj (m̂)] ,

b
(c,s,t)
j [Γj (ĉ) ,Ψj (m̂)] ≡ bj [Γj (ĉ) ,Ψj (m̂)] ,

i.e.,
(
b

(c,s,t)
j , t

(c,s,t)
j

)
copies (bj, tj).

Finally, when principal j observes qj =
[
Γj

(
ĉj, c

(c,s,t)
−j

)
,Ψj

(
s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ
])]
∈

Q∗∗j , i.e., j cannot confirm that the other players have deviated. Define

t
(c,s,t)
j (qj) ≡ tj [Γj (ĉj, c−j) ,Ψj (s [(ĉj, c−j) , θ])] ,

b
(c,s,t)
j (qj)

[{(
ĉj, c

(c,s,t)
−j

)}
× M̂ ×Θ

]
= 1 and

b
(c,s,t)
j (qj)

[{[(
ĉj, c

(c,s,t)
−j

)
, s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ′
]
, θ′
]}]
≡


p(θ′)
p[Υ(θ)]

if θ′ ∈ Υ (θ) ;

0 otherwise

,
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where Υ (θ) ≡
{
θ̃ ∈ Θ : Ψj

(
s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ̃
])

= Ψj

(
s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ
])}

,

i.e., b(c,s,t)
j (qj) believes in

(
ĉj, c

(c,s,t)
−j

)
with probability 1 and its belief on M̂ × Θ is derived

by Bayes’rule.

It is straightforward to see that (c, s, t) is replicated by
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
, and all the

players inherit incentive compatibility from (c, s, t), i.e.,
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
is a

[
CP , CA

]
-

equilibrium and z(c,s,t) = z(c(c,s,t),s(c,s,t),t(c,s,t)).�

A.2.2 Proof of Lemma 4

Fix A = Anon−delegated and any 〈Γ, Ψ〉 ∈
{〈

Γpublic,Ψprivate
〉
,
〈
Γpublic,Ψpublic

〉}
. Fix any

(c, s, t) ∈ E 〈A, Γ, Ψ〉-[CA,CA]. We aim to replicate (c, s, t) with a
[
CR, CA

]
-equilibrium that

induces z(c,s,t).

Replicating c with c(c,s,t) ∈ CR:

On the equilibrium path, for each j ∈ J , offering cj is equivalent to offering the menu-
of-menu-with-recommendation contract, c(c,s,t)

j : M
(c,s,t)
j −→ Yj with

M
(c,s,t)
j ≡

[Ej = cj [sj (c′, θ)] , yj = tj [Γj (c′) ,Ψj (s (c′, θ))]] :
c′j = cj,(
c′−j, θ

)
∈ CA−j ×Θ

 ,
(26)

c
(c,s,t)
j [Ej, yj] = Ej, ∀ [Ej, yj] ∈M (c,s,t)

j .

Given
((
cj, c

′
−j
)
, θ
)
∈ CA×Θ, if all players follow (s, t), the subset Ej = cj

[
sj
((
cj, c

′
−j
)
, θ
)]

is fixed for j at Stage 2, and j takes the action yj = tj
[
Γj
((
cj, c

′
−j
))
,Ψj

(
s
((
cj, c

′
−j
)
, θ
))]

at Stage 3. M (c,s,t)
j is the set of all such profiles. Define c(c,s,t) ≡

(
c

(c,s,t)
k

)
k∈J
∈ CR, and let

Ĉ ≡ ×k∈J Ĉk ≡ ×k∈J
({
c

(c,s,t)
k

}
∪ CAk

)
and

M̂ ≡ ×k∈J M̂k ≡ ×k∈J
(
M

(c,s,t)
k ∪MA

k

)
denote the relevant contract space and the relevant message space respectively in the

[
CR, CA

]
-

game. In the
[
CA, CA

]
-game, CA andMA are the relevant contract space and message space,

respectively.

Replicating s ≡ (sk)k∈J with s
(c,s,t) ≡

(
s

(c,s,t)
k

)
k∈J

:
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When the agent observes c(c,s,t)
k in the

[
CR, CA

]
-game, he interprets it as ck in the[

CA, CA
]
-game, due to the replication process above. Also, when the agent observes c′j ∈ CAj

in the
[
CR, CA

]
-game, he interprets it as c′j ∈ CAj in the

[
CA, CA

]
-game. To record this

interpretation, define γj : Ĉj −→ CAj for each j ∈ J as

γj (ĉj) ≡

 cj, if ĉj = c
(c,s,t)
j ;

ĉj, if ĉj ∈ CAj ,
(27)

and denote γ (ĉ) ≡
(
[γk (ĉk)]k∈J

)
∈ CA for all ĉ = (ĉk)k∈J ∈ Ĉ.

For the agent’s strategy in the
[
CR, CA

]
-game, we replicate s ≡ (sk)k∈J with s

(c,s,t) ≡(
s

(c,s,t)
k

)
defined as follows. For each j ∈ J and all (ĉ, θ) ∈ Ĉ ×Θ,

s
(c,s,t)
j (ĉ, θ) =

 sj [γ (ĉ) , θ], if ĉj ∈ CAj ;
[Ej = cj (sj [γ (ĉ) , θ]) , yj = tj (Γj (γ (ĉ)) ,Ψj [s (γ (ĉ) , θ)])], if ĉj = c

(c,s,t)
j .

I.e., when principals offer ĉ in the
[
CR, CA

]
-game, the agent regards it as γ (ĉ) in the[

CA, CA
]
-game. Given γ (ĉ) in the

[
CA, CA

]
-game, the agent sends sj [γ (ĉ) , θ] to j at Stage

2, which pins down the subset cj (sj [γ (ĉ) , θ]) for j, and j takes the action tj (Γj (γ (ĉ)) ,Ψj [s (γ (ĉ) , θ)])

at Stage 3. Then, in the
[
CR, CA

]
-game, s(c,s,t)

j replicates sj: if ĉj ∈ CAj , the agent sends
sj [γ (ĉ) , θ] to j; if ĉj = c

(c,s,t)
j ∈ CR

j , the agent chooses the subset cj (sj [γ (ĉ) , θ]) with the

recommendation tj (Γj (γ (ĉ)) ,Ψj [s (γ (ĉ) , θ)]).

Replicating (bj, tj) with
(
b

(c,s,t)
j , t

(c,s,t)
j

)
:

We aim to replicate an equilibrium in the
[
CA, CA

]
-game with an equilibrium in the[

CR, CA
]
-game. γ ≡ (γk)k∈J defined in (27) describes how players translate contracts in the

the
[
CR, CA

]
-game to contracts in the

[
CA, CA

]
-game. We still need to define how players

translate messages in the the
[
CR, CA

]
-game to messages in the

[
CA, CA

]
-game.

By (26), there exists a surjective function ζj : CA−j ×Θ −→M
(c,s,t)
j :

ζj
(
c′−j, θ

)
=
[
Ej = cj

[
sj
((
cj, c

′
−j
)
, θ
)]
, yj = tj

[
Γj
((
cj, c

′
−j
))
,Ψj

(
s
((
cj, c

′
−j
)
, θ
))]]

,

i.e., upon observing
((
cj, c

′
−j
)
, θ
)
, by following s, the agent’s message would pin down the

subset Ej = cj
[
s
((
cj, c

′
−j
)
, θ
)]
⊂ Yj at Stage 2, and by following tj, principal j would take

the action yj = tj
[
Γj
((
cj, c

′
−j
))
,Ψj

(
s
((
cj, c

′
−j
)
, θ
))]

at Stage 3.– ζ
(
c′−j, θ

)
records this

profile, [Ej, yj].

Fix any injective ζ−1
j : M

(c,s,t)
j −→ CA−j ×Θ such that

ζj
[
ζ−1
j (mj)

]
= mj, ∀mj ∈M (c,s,t)

j ,
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i.e., each mj ∈ M
(c,s,t)
j is mapped to some

(
c′−j, θ

)
such that ζj

(
c′−j, θ

)
= mj. That is,

upon observing mj ∈ M (c,s,t)
j in the

[
CR, CA

]
-game, principals interpret it as the message

sj
[
cj, ζ

−1
j (mj)

]
in the

[
CA, CA

]
-game.

Given public announcement, the contract profile offered at Stage 1 will be common

knowledge. Given ĉ ∈ Ĉ offered at Stage 1, consider

M ĉ
j ≡

mj ∈ M̂j :
ĉj ∈ CAj =⇒ mj ∈MA

j ,

ĉj = c
(c,s,t)
j =⇒ mj ∈M (c,s,t)

j

 and M ĉ ≡
(
M ĉ

j

)
j∈J .

i.e., M ĉ is the set of message profiles that could be sent by the agent at Stage 2 in the[
CR, CA

]
-game. Given ĉ ∈ Ĉ offered at Stage 1, the function τ ĉ ≡

(
τ ĉj : M ĉ

j −→MA
j

)
j∈J

describes how the players translate messages in the
[
CR, CA

]
-game to the messages in the[

CA, CA
]
-game.

τ ĉj (mj) ≡

 mj, if ĉj ∈ CAj ;
sj
(
cj, ζ

−1 (mj)
)
, if ĉj = c

(c,s,t)
j ,

, ∀j ∈ J ,

i.e., the players re-label mj in the
[
CR, CA

]
-game if and only if ĉj = c

(c,s,t)
j , and when

ĉj = c
(c,s,t)
j , a message mj in the

[
CR, CA

]
-game is interpreted as sj

(
cj, ζ

−1
j (mj)

)
in the[

CA, CA
]
-game.

We are now ready to replicate tj with t
(c,s,t)
j .

t
(c,s,t)
j [Γj (ĉ) ,Ψj (m̂)] ≡ tj

[
Γj (γ (ĉ)) ,Ψj

(
τ ĉ (m̂)

)]
, ∀ (ĉ, m̂) ∈ Ĉ × M̂ ,

i.e., players translate the profile (ĉ, m̂) ∈ Ĉ × M̂ in the
[
CR, CA

]
-game to the profile(

γ (ĉ) , τ ĉ (m̂)
)
∈ CA ×MA, and t(c,s,t)j replicates tj.

Similarly, we replicate bj with b
(c,s,t)
j , subject to the translation of

(
γ, τ ĉ

)
. Rigorously,

consider

Qj ≡
{

[Γj (ĉ) ,Ψj (m̂)] : ĉ ∈ Ĉ and m̂ ∈ M̂
}
,

Q∗j ≡
{

[Γj (ĉ) ,Ψj (m̂)] ∈ Qj : ĉ−j = c
(c,s,t)
−j and m̂ = s(c,s,t) [ĉ, θ] for some θ ∈ Θ

}
.

i.e., Qj is the set of all possible information that principal j may observe before j takes an

action at Stage 3; Q∗j is the subset of information by which j cannot confirm that the other

players have deviated.

When principal j observes qj =
[
Γj

(
ĉj, c

(c,s,t)
−j

)
,Ψj

(
s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ
])]
∈ Q∗j for
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some θ ∈ Θ, j’s belief is induced by Bayes’rule, i.e.,

b
(c,s,t)
j (qj)

[{[(
ĉj, c

(c,s,t)
−j

)
, s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ′
]
, θ′
]}]
≡


p(θ′)
p[Υ(θ)]

if θ′ ∈ Υ (θ) ;

0 otherwise

,

where

Υ (θ) ≡
{
θ̃ ∈ Θ : Ψj

(
s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ̃
])

= Ψj

(
s(c,s,t)

[(
ĉj, c

(c,s,t)
−j

)
, θ
])}

.

When principal j observes qj = [Γj (ĉ) ,Ψj (m̂)] ∈ Qj�Q∗j , define

b
(c,s,t)
j (qj)

[
{ĉ} × M̂ ×Θ

]
= 1,

b
(c,s,t)
j [Γj (ĉ) ,Ψj (m̂)] [{ĉ} × E × {θ′}]

≡ bj
[
Γj (γ (ĉ)) ,Ψj

(
τ ĉ (m̂)

)] [
{γ (ĉ)} × τ ĉ (E)× {θ′}

]
, ∀E ∈ 2M̂ .

It is straightforward to see that (c, s, t) is replicated by
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
, and all the

players inherit incentive compatibility from (c, s, t), i.e.,
(
c(c,s,t), s(c,s,t), t(c,s,t)

)
is a

[
CP , CA

]
-

equilibrium and z(c,s,t) = z(c(c,s,t),s(c,s,t),t(c,s,t)).�

A.3 Proof of Proposition 2

FixA = Anon−delegated. Fix any 〈Γ, Ψ〉 ∈
{
〈Γprivate,Ψprivate〉 ,

〈
Γpublic,Ψprivate

〉
,
〈
Γpublic,Ψpublic

〉}
and any I ∈ {A, P, F,R}. SinceCA A∗∗ CF , Lemma 2 implies ZE

〈A, Γ, Ψ〉-[CI,CA] ⊃ ZE
〈A, Γ, Ψ〉-[CI,CF ]

.

We now prove

ZE
〈A, Γ, Ψ〉-[CI,CA]

⊂ ZE
〈A, Γ, Ψ〉-[CI,CF ]

.

Fix any (c, s, t) ∈ E 〈A, Γ, Ψ〉-[CI ,CA]. We will replicate (c, s, t) with some
(
c, s, t

)
∈ E 〈A, Γ, Ψ〉-[CI ,CF ]

such that z(c,s,t) = z(c,s,t).

Replicating s ≡ (sk)k∈J with s ≡ (sk)k∈J :

We replicate s in the
[
CI , CA

]
-game with s in the

[
CI , CF

]
-game. Since s is defined

on
(
{ck} ∪ CAk

)
k∈J and s is defined on

(
{ck} ∪ CF

k

)
k∈J , we need to define a function γ :(

{ck} ∪ CF
k

)
k∈J −→

(
{ck} ∪ CAk

)
k∈J , such that, upon observing c

′ ∈
(
{ck} ∪ CF

k

)
k∈J in the[

CI , CF
]
-game, the agent regards it as γ (c′) in the

[
CI , CA

]
-game, and then, s (c′) mimics

s [γ (c′)]. Thus, for each j ∈ J , consider γj : {cj} ∪ CF
j −→ {cj} ∪ CAj such that

γj (cj) = cj,
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and for each c′j ∈ CF
j � {cj}, we define γj

(
c′j
)
as follows. Since c′j ∈ CF

j , we have a pair of[
Lj ⊂ 2Yj and Hj = {[Ej, yj] : yj ∈ Ej}

]
satisfying Definition 4. Fix any injective function

φ
c′j
j : Lj ∪ Hj −→ MA

j , i.e., given c
′
j ∈ CF

j , we identify a message m
′
j ∈ Lj ∪ Hj in the[

CI , CF
]
-game to the message φ

c′j
j

(
m′j
)
∈ MA

j in the
[
CI , CA

]
-game. With slight abuse of

notation, let
(
φ
c′j
j

)−1

: φ
c′j
j [Lj ∪Hj] −→ Lj ∪Hj denote the inverse function of φ

c′j
j , i.e.,

φ
c′j
j

[(
φ
c′j
j

)−1

(mj)

]
= mj, ∀mj ∈ φ

c′j
j [Lj ∪Hj] .

We thus define γj
(
c′j
)
for each c′j ∈ CF

j � {cj} as follows.

γj
(
c′j
)

[mj] =

 c′j

((
φ
c′j
j

)−1

[mj]

)
if mj ∈ φ

c′j
j [Lj ∪Hj] ;

Ej otherwise,
∀mj ∈MA

j ,

i.e., we first embed the message space Lj ∪ Hj into MA
j by φ

c′j
j ; second, we copy c

′
j with

γj
(
c′j
)
on the embedded message space; third, all of the other messages in MA

j are mapped

to Ej. Furthermore, denote γ (c′) ≡ (γk (c′k))k∈J and φ
c′ :≡

[
φ
c′j
j : Lj ∪Hj −→MA

j

]
k∈J

.

We are now ready to define s ≡ (sk)k∈J . For each j ∈ J , define

sj (c′, θ) ≡



sj (γ (c′) , θ) if c′j = cj;

(
φ
c′j
j

)−1

[sj (γ (c′) , θ)] if c′j 6= cj and sj (γ (c′) , θ) ∈ φc
′
j

j [Lj] ;

[Ej, yj = tj (Γj (γ (c′)) ,Ψj (s (γ (c′) , θ)))] otherwise.

When the agent observes c′ ∈
(
{ck} ∪ CF

k

)
k∈J in the

[
CI , CF

]
-game, the agent translates

it to γ (c′) ∈
(
{ck} ∪ CAk

)
k∈J being offered in the

[
CI , CA

]
-game. Then, sj (c′, θ) replicates

sj (γ (c′) , θ): if c′j = cj, we have sj (c′, θ) = sj (γ (c′) , θ); if c′j 6= cj and sj (γ (c′) , θ) ∈ φc
′
j

j [Lj],

sj (c′, θ) mimics sj (γ (c′) , θ) subject to re-labeling of message by
(
φ
c′j
j

)−1

; otherwise, the

message sj (γ (c′) , θ) pins down the subset Ej at Stage 2 in the
[
CI , CA

]
-game, and at stage

3, j would take the action tj (Γj (γ (c′)) ,Ψj (s (γ (c′) , θ))), and hence, sj (c′, θ) mimics this

by choosing

[Ej, yj = tj (Γj (γ (c′)) ,Ψj (s (γ (c′) , θ)))]

in the menu-of-menu-with-full-recommendation contract c′j ∈ CF
j .

Replicating (bj, tj) with
(
bj, tj

)
:

40



Given c′j ∈ {cj} ∪ CF
j , let M

c′j
j denote the domain of c′j. For each j ∈ J , define

QF
j ≡

(Γj (c′) ,Ψj (m)) :
c′ = (c′k)k∈J ∈ ×k∈J

(
{ck} ∪ CF

k

)
m = (mk)k∈J ∈ ×k∈J

(
M

c′k
k

)  ,
QF∗
j ≡

(Γj (c′) ,Ψj (s (c′, θ))) :
c′ ∈ ×k∈J

(
{ck} ∪ CF

k

)
θ ∈ Θ

 ,
i.e., in the

[
CI , CF

]
-game, QF

j is the set of all possible information that principal j may

observe before j takes an action at Stage 3, and QF∗
j is the subset of information induced by

the agent following s (which replicates s). For each qj ∈ QF∗
j , fix any (cqj , θqj) such that

qj = (Γj (cqj) ,Ψj (s (cqj , θqj))) .

For each qj ∈ QF
j �QF∗

j , fix any (cqj ,m) such that

qj = (Γj (cqj) ,Ψj (m)) .

We record this as Σj : QF
j −→ QAj such that

Σj (qj) ≡


[Γj (γ (cqj)) ,Ψj (s (γ (cqj) , θqj))] if qj ∈ QF∗

j ;

[
Γj [γ (cqj)] ,Ψj

[
φc

qj
(m)

]]
if qj ∈ QF

j �QF∗
j

,

where QAj ≡

(Γj (c′) ,Ψj (m)) :
c′ = (c′k)k∈J ∈ ×k∈J

(
{ck} ∪ CAk

)
m = (mk)k∈J ∈ ×k∈J

(
M

c′k
k

)  ,
i.e., principal j’s information at Stage 3, qj ∈ QF

j , in the
[
CI , CF

]
-game is translated to

Σj (qj) ∈ QAj , in the
[
CI , CA

]
-game. Thus, we define

tj (qj) ≡ tj (Σj (qj)) .

Furthermore, bj (qj) replicates bj (Σj (qj)), subject to re-labeling of contracts and messages.

Rigorously, we define the beliefs for 〈Γprivate,Ψprivate〉,
〈
Γpublic,Ψprivate

〉
and

〈
Γpublic,Ψpublic

〉
as follows.

Case 1:
〈
Γpublic,Ψpublic

〉
Given

〈
Γpublic,Ψpublic

〉
, all principals observe all contracts and

all messages. Thus, each principal has a degenerate belief on C ×M , and hence, we only
describe the marginal belief on Θ. Define

bj (qj) [{(θ)}] ≡ bj (Σj (qj)) [{(θ)}] ,

bj (qj) mimics bj (Σj (qj)) on the belief on Θ.
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Case 2: 〈Γprivate,Ψprivate〉 For each j ∈ J and each yj ∈ Yj, let cyjj denote the degenerate

menu contract {yj}, i.e., it is a menu containing only yj. Letmyj
j = yj be the unique message

in this contract. Clearly, cyjj ∈ CP
j ⊂ CF

j .

Given 〈Γprivate,Ψprivate〉, each principal j observes only
(
c′j,m

′
j

)
, and for notational

simplicity, we write tj
[
c′j,m

′
j

]
for tj (Γj (c′) ,Ψj (m′)). Furthermore, j has a degenerate belief

on Cj ×Mj, and hence, we describe only the marginal belief on C−j ×M−j × Θ. For each

qj ∈ QF
j , define

bj (qj)
[{(

(cykk )k∈J�{j} , (m
yk
k )k∈J�{j} , θ

)}]
≡ bj (Σj (qj))

[{(
(c′k)k∈J�{j} , (m

′
k)k∈J�{j} , θ

)
: (yk)k∈J�{j} = (tk [c′k,m

′
k])k∈J�{j}

}]
,

∀
[
(yk)k∈J�{j} , θ

]
∈
[
×k∈J�{j}Yk

]
×Θ,

i.e., bj (qj) mimics bj (Σj (qj)) regarding induced belief on
[
×k∈J�{j}Yk

]
×Θ.

Case 3:
〈
Γpublic,Ψprivate

〉
Given

〈
Γpublic,Ψprivate

〉
, each principal j observes only

(
c′,m′j

)
,

and for notational simplicity, we write tj
[
c′,m′j

]
for tj (Γj (c′) ,Ψj (m′)). Furthermore, j has

a degenerate belief on C ×Mj, and hence, we describe only the marginal belief on M−j ×Θ.

For each qj = (Γj (cqj) ,Ψj (s (cqj , θqj))) ∈ QF∗
j , bj (qj) mimics

bj (Σj (qj)) = bj ([Γj (γ (cqj)) ,Ψj (s (γ (cqj) , θqj))]) .

For each c′ ∈
(
{ck} ∪ CF

k

)
k∈J and each j ∈ J , we use η

c′
j : M

γj(c′j)
j −→ M

c′j
j defined below

to translate messages in M
γj(c′j)
j back to messages in M

c′j
j .

ηc
′

j (mj) =



mj if c′j = cj;

φ
c′k
k (mk) if


c′j ∈ CF

j � {cj} ,
∃
[
Lj ⊂ 2Yj and Hj = {[Ej, yj] : yj ∈ Ej}

]
satisfying Definition 4,

γj
(
c′j
)

[mj] 6= Ej



[Ek, tk [c′,mk]] if


c′j ∈ CF

j � {cj} ,
∃
[
Lj ⊂ 2Yj and Hj = {[Ej, yj] : yj ∈ Ej}

]
satisfying Definition 4,

γj
(
c′j
)

[mj] = Ej


Then, define

bj (qj) [N × {θ}] ≡ bj (Σj (qj))

[{(
(mk)k∈J�{j} , θ

)
:
[
ηc

qj

k (mk)
]
k∈J�{j}

∈ N
}]
,

∀N ⊂ ×k∈J�{j}
(
M cqj

k

)
, ∀θ ∈ Θ,
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i.e., bj (qj) mimics bj (Σj (qj)) subject to re-labeling messages via ηc
qj

k . Similarly, for each

qj = (Γj (cqj) ,Ψj (m)) ∈ QF
j �QF∗

j , bj (qj) mimics

bj (Σj (qj)) = bj

([
Γj [γ (cqj)] ,Ψj

[
φc

qj
(m)

]])
.

Thus, define

bj (qj) [N × {θ}] ≡ bj (Σj (qj))

[{(
(mk)k∈J�{j} , θ

)
:
[
ηc

qj

k (mk)
]
k∈J�{j}

∈ N
}]
,

∀N ⊂ ×k∈J�{j}
(
M cqj k

k

)
, ∀θ ∈ Θ,

i.e., bj (qj) mimics bj (Σj (qj)) subject to re-labeling messages via ηc
qj

k .

It is straightforward to see that (c, s, t) is replicated by
(
c, s, t

)
, and all the play-

ers inherit incentive compatibility from (c, s, t), i.e.,
(
c, s, t

)
is a

[
CI , CF

]
-equilibrium and

z(c,s,t) = z(c,s,t).�

A.4 Proof of Theorem 3

Proof. Fix 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψprivate

〉
. We have

ZE
〈A, Γ, Ψ〉-[CA,CA]

⊃ ZE
〈A, Γ, Ψ〉-[CP ,CA]

, (28)

ZE
〈A, Γ, Ψ〉-[CA,CA]

⊂ ZE
〈A, Γ, Ψ〉-[CP ,CA]

, (29)

ZE
〈A, Γ, Ψ〉-[CP ,CA]

= ZE
〈A, Γ, Ψ〉-[CP ,CF ]

, (30)

where (28) follows from Lemma 1 and CA A∗ CP , (29) from Lemma 3, and (30) from

Proposition 2. (28), (29) and (30) imply Theorem 3.�

A.5 Proof of Theorem 4

Proof. Fix 〈A, Γ, Ψ〉 =
〈
Anon−delegated, Γprivate, Ψprivate

〉
. We have

ZE
〈A, Γ, Ψ〉-[CA,CA]

= ZE
〈A, Γ, Ψ〉-[CP ,CF ]

, (31)

ZE
〈A, Γ, Ψ〉-[CP ,CP ]

⊃ ZE
〈A, Γ, Ψ〉-[CP ,CF ]

, (32)

where (31) follows from Theorem 3 and (32) from Lemma 2 and CP A∗∗ CF . Thus, (31)

and (32) imply Theorem 4.�
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