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Abstract

An “effect display” is a graphical or tabular summary of a statistical model based on

high-order terms in the model. Effect displays have previously been defined by Fox

(1987, 2003) for generalized linear models (including linear models). Such displays

are especially compelling for complicated models, for example those including inter-

actions or polynomial terms. This paper extends effect displays to models commonly

used for polytomous categorical response variables: the multinomial logit model and

the proportional-odds logit model. Determining point estimates of effects for these

models is a straightforward extension of results for the generalized linear model. Esti-

mating sampling variation for effects on the probability scale in the multinomial and

proportional-odds logit models is more challenging, however, and we use the delta

method to derive approximate standard errors. Finally, we provide software for effect

displays in the R statistical computing environment.



1 Introduction

Effect displays, in the sense of Fox (1987, 2003), are tabular or – more often –

graphical summaries of statistical models. Fox (1987) introduces effects displays for

generalized linear models (including linear models); Fox (2003) refines these methods

and provides software for their essentially automatic implementation.

The general idea underlying effect displays – to represent a statistical model

by showing carefully selected portions of its response surface – is not limited to

generalized linear models, however, nor even to models that incorporate linear pre-

dictors. Moreover, the essential idea of effect displays is not wholly original with

Fox (1987). For example, adjusted means in analysis of covariance (introduced by

Fisher, 1936) are a precursor to more general effect displays. Goodnight and Har-

vey’s (1978) “least-squares means” in analysis of variance and covariance, and Searle,

Speed, and Milliken’s (1980) “estimated population marginal means” are effect dis-

plays restricted to interactions among factors (i.e., categorical predictors) in a linear

model. King, Tomz, and Wittenberg (2000) and Tomz, Wittenberg, and King (2003)

have presented similar ideas, but their approach is based on Monte-Carlo simulation

of a model. In contrast, the analytical results that we give below can be computed

directly. Long (1997) discusses several strategies for presenting statistical models fit

to categorical response variables, including displaying estimated probabilities.

The primary purpose of this paper is to extend effect displays to the multinomial

logit model and to the proportional-odds logit model, statistical models that find

common application in social research. As we will show, this extension is largely

straightforward, although the derivation of standard errors is challenging, particularly

in the proportional-odds model. We begin by reviewing effect displays for generalized

linear models, using as examples a binary logit model and a linear model. We then
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present results for the multinomial and proportional-odds logit models. In each of

these sections, we illustrate the results with examples.

2 Effect Displays for Generalized Linear Models:

Background and Preliminary Examples

A general principle of interpretation for statistical models containing terms that are

marginal to others (in the sense of Nelder, 1977) is that high-order terms should

be combined with their lower-order relatives – for example, an interaction between

two factors should be combined with the main effects marginal to the interaction. In

conformity with this principle, Fox (1987) suggests identifying the high-order terms in

a generalized linear model and computing fitted values for each such term. The lower-

order ‘relatives’ of a high-order term (e.g., main effects marginal to an interaction,

or a linear and quadratic term in a third-order polynomial, which are marginal to

the cubic term) are absorbed into the term, allowing the predictors appearing in the

high-order term to range over their values. The values of other predictors are fixed

at typical values: for example, a covariate could be fixed at its mean or median, a

factor at its proportional distribution in the data, or to equal proportions in its several

levels.

Some models have high-order terms that ‘overlap’ – that is, that share a lower-

order relative (other than the constant). Consider, for example, a generalized linear

model that includes interactions AB, AC, and BC among the three factors A, B, and

C. Although the three-way interaction ABC is not in the model, it is nevertheless

illuminating to combine the three high-order terms and their lower-order relatives

(see Fox, 2003, and the example developed in Section 2.1).
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Let us turn now to the generalized linear model (e.g., McCullagh and Nelder,

1998, or Firth, 1991) with linear predictor η = Xβ and link function g(µ) = η, where

µ is the expectation of the response vector y. Here, everything falls into place very

simply: We have an estimate bβ of β, along with the estimated covariance matrix[V (bβ)
of bβ.
Let the rows of X∗ include all combinations of values of predictors appearing in a

high-order term, along with typical values of the remaining predictors. The structure

of X∗ with respect, for example, to interactions, is the same as that of the model

matrix X. Then the fitted values bη∗ = X∗bβ represent the effect in question, and a
table or graph of these values – or, alternatively, of the fitted values transformed to

the scale of the response, g−1(bη∗) – is an effect display. The standard errors of bη∗,
available as the square-root diagonal entries of X∗[V (bβ)X∗0, may be used to compute
point-wise confidence intervals for the effects, the end-points of which may then also

be transformed to the scale of the response.

In an application, as we will illustrate presently, we prefer plotting on the scale of

the linear predictor (where the structure of the model – for example, with respect to

linearity — is preserved) but labelling the response axis on the scale of the response.

This approach has the advantage of making the configuration of the display invariant

with respect to the values at which the omitted predictors are held constant, in the

sense that only the labelling of the response axis changes with a different selection of

these values.1

1As David Firth has pointed out to us, however, this invariance does not hold with respect to
standard errors, which are affected by the fixed elements of X∗, a fact that follows from considering
effects as fitted values. Standard errors will tend to be smaller for components of x0 near the center
of the data.
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2.1 A Binary Logit Model: Toronto Arrests for Marijuana

Possession

Following Fox (2003), we construct effect displays for a binary logit model fit to

data on police treatment of individuals arrested in Toronto for simple possession of

small quantities of marijuana. (The data discussed here are part of a larger data

set featured in a series of articles in the Toronto Star newspaper.) Under these

circumstances, police have the option of releasing an arrestee with a summons to

appear in court – similar to a traffic ticket – or bringing the individual to the police

station for questioning and possible indictment. The principal question of interest is

whether and how the probability of release is influenced by the subject’s sex, race,

age, employment status, and citizenship, the year in which the arrest took place, and

the subject’s previous police record. Most of these variables are self-explanatory, with

the following exceptions:

• Race appears in the model as “color,” and is coded as either “black” or “white.”

The original data included the additional categories “brown” and “other,” but

their meaning is ambiguous and their use relatively infrequent. Moreover, the

motivation for collecting the data was to determine whether blacks and whites

are treated differently by the police.

• The observations span the years 1997 through (part of) 2002. A few arrests in

1996 were eliminated. In the analysis reported below, year is treated as a factor

(i.e., as a categorical predictor).

• When suspects are stopped by the police, their names are checked in six data

bases – of previous arrests, previous convictions, parole status, and so on. The

variable “checks” records the number of data bases on which an individual’s
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name appeared.

Preliminary analysis of the data suggested a logit model including interactions

between color and year and between color and age, and main effects of employment

status, citizenship, and checks. The effects of age and checks appear to be reasonably

linear on the logit scale and are modelled as such.

Estimated coefficients and their standard errors are shown in Table 1. Where

predictors are represented by dummy regressors, the category coded one is given in

parentheses; for year, the baseline category is 1997. A fundamental point to be made

with respect to Table 1 is that it is difficult to tell from the coefficients alone how the

predictors combine to influence the response. This difficulty is primarily a function of

the complex structure of the model – that is, the interactions of color with year and

age – but partly due to the fact that the coefficients are effects on the logit scale.2

It is true that with some mental arithmetic we can draw certain conclusions from the

table of coefficients. For example, the fitted probability of release declines with age

for whites but increases with age for blacks. Grasping the color-by-year interaction is

more difficult, however, as is discerning the combined effect of these three predictors.

Two effect displays for the model fit to the Toronto marijuana-arrests data appear

in Figures 1 and 2. Figure 1 depicts the interaction between color and age. The lines

in this graph are plotted on the logit scale (i.e., the scale of the linear predictor),

but the vertical axis of the graph is labelled on the probability scale (the scale of the

response); the broken lines give point-wise 95-percent confidence envelopes around the

fitted values. Figure 2 combines the color-by-age interaction with the color-by-year

interaction. Because there is no three-way interaction (and no interaction between

2A common device, which speaks partly to the second problem but not the first, is to exponentiate
the coefficients in the logit model. The exponentiated coefficients are interpretable as multiplicative
effects on the relative odds of the response. Interpreting interactions using exponentiated coefficients
becomes even more difficult because it requires mental multiplication rather than addition.
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age and year), the lines for blacks are parallel across the six panels of the graph, as

are the lines for whites. A graph such as Figure 2 effectively communicates what the

model has to say about how color, age, and year combine to influence the probability

of release.

2.2 A Linear Model: Canadian Occupational Prestige

The data for our second example, also adapted from Fox (2003), pertain to the rated

prestige of 102 Canadian occupations. The prestige of the occupations is regressed on

three predictors, all derived from the 1971 Census of Canada: the average income of

occupational incumbents, in dollars (represented in the model as the log of income);

the average education of occupational incumbents, in years (represented by a B-spline

with three degrees of freedom); and the percentage of occupational incumbents who

were women (represented by an orthogonal polynomial of degree two). Estimated

coefficients and standard errors for this model are shown in Table 2.

This model does a decent job of summarizing the data, but the meaning of its

coefficients is relatively obscure – despite the fact that the model includes no inter-

actions. The coefficient of log income, for example, would be more easily interpreted

had we used logs to the base two rather than natural logs. The coefficients corre-

sponding to the different elements of the B-spline basis do not have straightforward

individual interpretations. Finally, although we can see from the coefficients for the

orthogonal polynomial fit to the percentage of women that the linear trend in this

predictor is non-significant while the quadratic trend is highly significant, these two

coefficients are best interpreted in combination. It is therefore much more straight-

forward to apprehend these terms graphically as effect displays (Figure 3). We prefer

to plot income on the natural scale rather than using a log horizontal axis, making
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Coefficient Estimate Standard Error
Constant 0.344 0.310
Employed (Yes) 0.735 0.085
Citizen (Yes) 0.586 0.114
Checks −0.367 0.026
Color (White) 1.213 0.350
Year (1998) −0.431 0.260
Year (1999) −0.094 0.261
Year (2000) −0.011 0.259
Year (2001) 0.243 0.263
Year (2002) 0.213 0.353
Age 0.029 0.009
Color (White) × Year (1998) 0.652 0.313
Color (White) × Year (1999) 0.156 0.307
Color (White) × Year (2000) 0.296 0.306
Color (White) × Year (2001) −0.381 0.304
Color (White) × Year (2002) −0.617 0.419
Color (White) × Age −0.037 0.010

Table 1: Maximum-likelihood estimates and standard errors for coefficients in the
logit model for the Toronto marijuana-arrests data.
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Figure 1: Effect display for the interaction of color and age in the logit model fit to the
Toronto marijuana-arrests data. The vertical axis is labelled on the probability scale,
and a 95-percent point-wise confidence envelope is drawn around the estimated effect.
This graph, and those in Figures 2 and 3, are produced by the software described in
Fox (2003).
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Figure 2: An effect display that combines the color-by-year and color-by-age interac-
tions.

Coefficient Estimate Standard Error
Constant −72.92 15.49
log Income 12.67 1.84
Education (1) −8.20 7.8
Education (2) 25.66 5.50
Education (3) 30.42 4.59
Women (linear) 11.98 9.38
Women (quadratic) 18.47 6.83

Table 2: Coefficients for the regression of occupational prestige on the income and
education levels of the occupations and on the percentage of occupational incumbents
who are women. Education is represented in the model by a three degree-of-freedom
B-spline, education by a second-order orothogonal polynomial.
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the income effect nonlinear.

3 Effect Displays for the Multinomial Logit Model

3.1 Basic Results

The multinomial logit model is arguably the most widely used statistical model for

polytomous (multi-category) response variables (e.g., Fox, 1997: Chapter 15; Long,

1997: Chapter 6; Powers and Xie, 2000: Chapter 7). Letting µij denote the proba-

bility that observation i belongs to response category j of m categories, the model is

given by

µij =
exp(x0iβj)

mP
k=1

exp(x0kβj)
for j = 1, ...,m (1)

where x0i = (1, xi2, . . . , xip) is the model vector for observation i and βj = (β1, β2, . . . , βp)
0

is the parameter vector for response category j. Observations may represent individ-

uals, who therefore fall into a particular category of the response, or a vector of cate-

gory counts for a multinomial observation (as in a contingency table, where both the

predictors and the explanatory variables are discrete); the first situation is a special

case of the second, setting all of the multinomial total counts (i.e., the “multinomial

denominators”) ni to 1.

As it stands, model 1 is over-parametrized, because of the constraint that the prob-

abilities for each observation sum to one:
Pm

j=1 µij = 1. The resulting indeterminacy

can be handled by a normalization, placing a linear constraint on the parameters,Pm
j=1 ajβj = 0, where the aj are constants, not all zero. There is an important sense

in which the choice of constraint is inessential: Fitted probabilities, bµij, and hence the
likelihood, under the model are unaffected by the constraint. The meaning of specific
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Figure 3: Effect plots for the predictors of prestige in the Canadian occupational
prestige data. The model includes the log of income, a three-degree-of-freedom B-
spline in education, and a quadratic in the percentage of occupational incumbents
who are women. The “rug plot” (one-dimensional scatterplot) at the bottom of each
graph shows the distribution of the corresponding predictor. The broken lines give
point-wise 95-percent confidence intervals around the fitted values.
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parameters depends upon the constraint, however, and as we will explain, adds to

the difficulty of directly interpreting coefficient estimates for the model. The most

common constraint is to set one of the βj to zero (i.e., to set one of the aj to 1 and

the rest to 0); for convenience, we will set βm = 0, allowing us to rewrite equation 1

as

µij =
exp(x0iβj)

1 +
m−1P
k=1

exp(x0kβj)

for j = 1, ...,m− 1 (2)

µim = 1−
m−1X
k=1

µik (for category m)

Algebraic manipulation of model 2 suggests an interpretation of the coefficients

of the model:

log
µij
µim

= x0iβj for j = 1, ...,m− 1 (3)

and thus the coefficient vector βj is for the relative log-odds of membership in category

j versus the “baseline” category m. We can, moreover, express the relative log-odds

of membership in any pair of categories in terms of differences in their coefficient

vectors:

log
µij
µij0

= x0i(βj − βj0) for j, j0 6= m (4)

All this is well and good, but it does not produce intuitively easy-to-grasp coeffi-

cients, since pair-wise comparison of the categories of the response is not in itself a

natural manner in which to think about a polytomous variable. This difficulty of

interpretation pertains even to models in which the structure of the model vector x0

is simple.

Our strategy for building effect displays for the multinomial logit model is essen-

tially the same as for generalized linear models: Find fitted values – in this case,
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fitted probabilities – under the model for selected combinations of the predictors.

The fitted values on the probability scale, bµij, are given by model 2, substituting
estimates bβj for the parameter vectors βj.
Finding standard errors for fitted values on the probability scale is more of a

challenge, however. As is obvious from model 2, the fitted probabilities are nonlinear

functions of the model parameters. We did not encounter this difficulty in the binary

logit model because we could work on the scale of the linear predictor, translating the

end-points of confidence intervals to the probability scale (or equivalently, relabelling

the logit axis). In the multinomial logit model, however, as noted, the linear predictor

ηij = x0iβj is for the logit comparing category j to category m, not for the logit

comparing category j to its complement, log [µij/(1− µij)].

Suppose that we compute the fitted value at x00 (e.g., a focal point in an effect

display). Differentiating µ0j with respect to the model parameters yields

∂µ0j
∂βj

=
exp(x00βj)

h
1 +

Pm−1
k=1,k 6=j exp(x

0
0βk)

i
x0£

1 +
Pm−1

k=1 exp(x
0
0βk)

¤2
∂µ0j
∂βj0 6=j

= − {exp [x
0
0 (βj0 + βj)]}x0£

1 +
Pm−1

k=1 exp(x
0
0βk)

¤2
∂µ0m
∂βj

= − exp(x00βj)x0£
1 +

Pm−1
k=1 exp(x

0
0βk)

¤2
Let the estimated asymptotic covariance matrix of the (stacked) coefficient vectors

be given by

bV(bβ) = bV
⎡⎢⎢⎢⎢⎢⎢⎢⎣

bβ1bβ2
...bβm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [vst] , s, t = 1, . . . , r

Here, r = p(m − 1) represents the total number of parameters in the combined
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parameter vectors. bV(bβ) is typically computed along with bβ when the model is

estimated. Then, by the delta method (e.g., Schervish, 1995: Section 7.1.3),

bV(bµ0j) ' rX
s=1

rX
t=1

vst
∂bµ0j
∂bβs ∂bµ0j

∂bβt (5)

(where ' denotes approximation).

Because the bµ0j are bounded by 0 and 1, confidence intervals on the probability
scale are problematic, especially for values near the boundaries. We therefore suggest

the following refinement: Re-express the category probabilities µ0j as logits,

λ0j = log
µ0j

1− µ0j
(6)

These are not the paired-category logits (given in equations 3 and 4) to which the

parameters of the multinomial logit model directly pertain but rather the log-odds of

membership in each category relative to all others. Differentiating equation 6 with

respect to µ0j produces
dλ0j
dµ0j

=
1

µ0j(1− µ0j)

and, consequently, by a second application of the delta method,

bV(bλ0j) ' 1bµ20j(1− bµ0j)2 bV(bµ0j)
Using this result, we can form a confidence interval around bµ0j, and translate the
end-points back to the probability scale.
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3.2 Example: Political Knowledge and Party Choice in Britain

The example in this section is adapted from work by Andersen, Heath and Sinnott’s

(2002) on political knowledge and electoral choices in Britain (see also Andersen,

Tilley and Heath, in press). The data are from the 1997-2001 British Election Panel

Study (BEPS). Although the same respondents were questioned at eight points in

time, we use information only from the final wave of the study, which was conducted

following the 2001 British election. After removing cases with missing data, the

sample size is 2206.

We fit a multinomial logit model to describe how attitude towards European

integration–an important issue during the 2001 British election–and knowledge of

the major political parties’ stances on Europe interact in their effect on party choice.

The variables in the model are as follows:

• The response variable is party choice, which has three categories: Labour, Con-

servative, and Liberal Democrat. Those who voted for other parties are excluded

from the analysis. The Conservative platform was decidedly Eurosceptic, while

both Labour and the Liberal Democrats took a clear pro-Europe position.

• “Europe” is an 11-point scale that measures respondents’ attitudes towards

European integration. High scores represent “Eurosceptic” sentiment.

• “Political knowledge” taps knowledge of party platforms on the European inte-

gration issue. The scale ranges from 0 (low knowledge) to 3 (high knowledge).

An analysis of deviance suggests that a linear specification for knowledge is

acceptable.

• The model also includes age, gender, perceptions of economic conditions over

the past year (both national and household), and evaluations of the leaders of

14



the three major parties.

Estimated coefficients and their standard errors from a final multinomial logit

model fit to the data are shown in Table 3.

We have already argued that interpreting coefficients in logit models is not simple,

especially in the presence of interactions. Interpretation of the multinomial logit

model is further complicated because the coefficients refer to contrasts of categories

of the response variable with a baseline category. Nonetheless, we can see even from

the coefficients that attitude towards Europe was related to party choice and that

this relationship differed according to level of political knowledge. An analysis of

deviance confirms that the interaction between attitude towards Europe and political

knowledge is statistically significant. As was the case with the binary logit model,

however, further interpretation is simplified by plotting this interaction as an effect

display.

Figure 4 displays the relationship between attitude towards Europe and the fitted

probability of voting for each of the three parties at the several levels of political

knowledge (ranging from 0 to 3). An alternative display, with 95-percent confidence

intervals around the fitted probabilities, appears in Figure 5. It is much easier to

interpret the interaction between attitude and knowledge in these effect plots than

directly from the coefficients: At the lowest level of knowledge, there is apparently

no relationship between attitude towards Europe and party choice. In contrast, as

knowledge increases, voters are progressively more likely to match their attitudes to

party platforms – that is, the more Eurosceptic voters are, the more likely they are

to support the Conservative Party and the less likely they are to support Labour or

the Liberal Democrats. We therefore see much more clearly than we could from Table

3 the importance of information to voting behaviour – issues do matter in elections,
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Labour/Liberal Democrat
Coefficient Estimate Standard Error
Constant −0.155 0.612
Age −0.005 0.005
Gender (male) 0.021 0.144
Perceptions of Economy 0.377 0.091
Perceptions of Household Economic Position 0.171 0.082
Evaluation of Blair (Labour leader) 0.546 0.071
Evaluation of Hague (Conservative leader) −0.088 0.064
Evaluation of Kennedy (Liberal Democrat leader) −0.416 0.072
Europe −0.070 0.040
Political Knowledge −0.502 0.155
Europe × Knowledge 0.024 0.021

Conservative/Liberal Democrat
Coefficient Estimate Standard Error
Constant 0.718 0.734
Age 0.015 0.006
Gender (male) −0.091 0.178
Perceptions of Economy −0.145 0.110
Perceptions of Household Economic Position −0.008 0.101
Evaluation of Blair (Labour leader) −0.278 0.079
Evaluation of Hague (Conservative leader) 0.781 0.079
Evaluation of Kennedy (Liberal Democrat leader) −0.656 0.086
Europe −0.068 0.049
Political Knowledge −1.160 0.219
Europe × Knowledge 0.183 0.028

Table 3: Coefficients for a multinomial logit model regressing party choice on attitude
towards European integration, political knowledge and other explanatory variables.
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Figure 4: Display of the interaction between attitude towards Europe and political
knowledge, showing the effects of these variables on the fitted probability of voting
for each of the three major British parties in 2001.
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Figure 5: Alternative display of the interaction between attitude towards Europe and
political knowledge. The broken lines give point-wise 95-percent confidence intervals
around the fitted probabilities.
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but only to those who have knowledge of party platforms (a point discussed at greater

length in Andersen, 2003).

4 Effect Displays for the Proportional-Odds Logit

Model

4.1 Basic Results

The proportional-odds logit model is a common model for an ordinal response variable

(e.g., Fox, 1997: Chapter 15; Long, 1997: Chapter 5; Powers and Xie, 2000: Chapter

6). The model is often motivated as follows: Suppose that there is a continuous, but

unobservable, response variable, ξ, which is a linear function of a predictor vector x0

plus a random error:

ξi = β0xi + εi

= ηi + εi

We cannot observe ξ directly, but instead implicitly dissect its range into m class

intervals at the (unknown) thresholds α1 < α2 < · · · < αm−1, producing the observed

ordinal response variable y. That is,

yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for ξi ≤ α1

2 for α1 < ξi ≤ α2
...

m− 1 for αm−2 < ξi ≤ αm−1

m for αm−1 < ξi
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The cumulative probability distribution of yi is given by

Pr(yi ≤ j) = Pr(ξi ≤ αj)

= Pr(ηi + εi ≤ αj)

= Pr(εi ≤ αj − ηi)

for j = 1, 2, ...,m− 1. If the errors εi are independently distributed according to the

standard logistic distribution, with distribution function

Λ(z) =
1

1 + e−z

then we get the proportional-odds logit model:

logit[Pr(yi > j)] = loge
Pr(yi > j)

Pr(yi ≤ j)
(7)

= −αj + β0xi

for j = 1, 2, ...,m − 1. (The similar ordered probit model is produced by assuming

that the εi are normally distributed.)

Model 7 is over-parametrized: Since the β vector typically includes a constant,

say β1, we have m− 1 regression equations, the intercepts of which are expressed in

terms of m (i.e., one too many) parameters. A solution is to eliminate the constant

from β. Setting β1 = 0 in this manner in effect establishes the origin of the latent

continuum ξ; we already implicitly established the scale of ξ by fixing the variance of

the error to the variance of the standard logistic distribution (π2/3). For convenience,
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we will absorb the negative sign into the intercept, rewriting the model as

logit[Pr(yi > j)] = αj + β0xi, for j = 1, 2, ...,m− 1

Then the thresholds are the negatives of the intercepts αj.

When it adequately represents the data, the proportional-odds model is more par-

simonious than the multinomial logit model (and other models for unordered poly-

tomies): While the proportional-odds model has m+ p− 2 independent parameters,

the multinomial logit model has p(m− 1) independent parameters.

We propose two strategies for constructing effect displays for the proportional-

odds model. The more straightforward strategy is to plot on the scale of the latent

continuum, using the estimated thresholds, −bαj, to show the division of the contin-

uum into ordered categories. There is not much more to say about this approach,

since – other than marking the thresholds (as illustrated in the example in Section

4.2) – one proceeds exactly as for a linear model.

The second approach is to display fitted probabilities of category membership, as

we did for the multinomial logit model. Suppose that we need the fitted probabilities

at x00 (where the constant regressor has been removed from the design vector x
0, and

the intercept from the parameter vector β). Let η0 = x00β, and let µ0j = Pr(Y0 = j).

Then

µ01 =
1

1 + exp(α1 + η0)

µ0j =
exp(η0) [exp(αj−1)− exp(αj)]

[1 + exp(αj−1 + η0)] [1 + exp(αj + η0)]
, j = 2, . . . ,m− 1

µ0m = 1−
m−1X
j=1

µ0j
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As in the case of the multinomial logit model, we derive approximate standard

errors by the delta method. The necessary derivatives are messier here, however:

∂µ01
∂α1

= − exp(α1 + η0)

[1 + exp(α1 + η0)]
2

∂µ01
∂αj

= 0, j = 2, . . . ,m− 1

∂µ01
∂β

= − exp(α1 + η0)x0

[1 + exp(α1 + η0)]
2

∂µ0j
∂αj−1

=
exp(αj−1 + η0)

[1 + exp(αj−1 + η0)]
2

∂µ0j
∂αj

= − exp(αj + η0)

[1 + exp(αj + η0)]
2

∂µ0j
∂αj0

= 0, j0 6= j, j − 1

∂µ0j
∂β

=
exp(η0) [exp(αj)− exp(αj−1)] [exp(αj−1 + αj + 2η0)− 1]x0

[1 + exp(αj−1 + η0)]
2 [1 + exp(αj + η0)]

2

∂µ0m
∂αm−1

=
exp(αm−1 + η0)

[1 + exp(αm−1 + η0)]
2

∂µ0m
∂αj

= 0, j = 1, . . . ,m− 2

∂µ0m
∂β

=
exp(αm−1 + η0)x0

[1 + exp(αm−1 + η0)]
2

Let us stack up all of the parameters in the vector γ = (α1, . . . , αm−1,β
0)0, and let

bV(bγ) = [vst] , s, t = 1, . . . , r
where r = m+ p− 2. Then, as for the multinomial logit model,

bV(bµ0j) ' rX
s=1

rX
t=1

vst
∂bµ0j
∂bγs ∂bµ0j

∂bγt
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and bV(bλ0j) ' 1bµ20j(1− bµ0j)2 bV(bµ0j)
where

λ0j = log
µ0j

1− µ0j

are the individual-category logits – that is, the log-odds of membership in a par-

ticular category versus all others, not the cumulative logits modelled directly by the

proportional-odds model (given in equation 7).

4.2 Example: Cross-National Differences in Attitudes To-

wards Government Efforts to Reduce Poverty

We now turn to an application of effect displays to a proportional-odds logit model.

Data for this example are taken from the World Values Survey of 1995-97 (Inglehart

et al., 2000). We use a subset of the World Values Survey, focusing on four countries

(with sample sizes in parentheses): Australia (1874), Norway (1127), Sweden (1003),

and the United States (1377). Although the variables that we employ are available

for more than 40 countries, we restrict attention to these four nations to simplify the

example. The variables in the model are as follows:

• The response variable is produced from answers to the question, “Do you think

that what the government is doing for people in poverty in this country is about

the right amount, too much, or too little?” We order the responses as too little

< about right < too much.

• Explanatory variables include gender, religion (coded 1 if the respondent be-

longed to a religion, 0 if the respondent did not), education (coded 1 if the
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respondent had a university degree, 0 if not), and country (dummy coded, with

Sweden as the reference category).

Preliminary analysis of the data suggested modeling the effect of age as a cubic

polynomial (we use an orthogonal cubic polynomial) and including an interaction

between age and country. The coefficients and their standard errors from a final

model fit to the data are displayed in Table 4.

The complexity of the nonlinear trend for age, its interaction with country, and

coefficients for cumulative logits make it extremely difficult to interpret the parameter

estimates associated with age. Instead, we construct effect displays for the interaction

of age with country. Figure 6 plots fitted probabilities for each category of the response

variable in the same manner as for the multinomial logit model of Section 3.2. Because

country takes on only four values while age is continuous, we construct a separate plot

for each country, placing age on the horizontal axis. There are three fitted lines in each

plot – representing the fitted probability of choosing each response category. Figure

7 is generally similar, but with 95-percent point-wise confidence intervals around

the fitted probabilities (and separate panels for each response category, so as not to

clutter the plots unduly). Although the graphs in Figures 6 and 7 are informative –

we see, for example, that age differences are relatively muted in the U.S., and that

respondents there are less likely than others to feel that the government is not doing

enough for the poor – the display does not take full advantage of the parsimony of

the proportional-odds model.

One can capitalize on the structure of the proportional-odds model to plot the

fitted response on the scale of the latent attitude continuum. We pursue this strategy

in Figure 8, in which there is only one line for each country.3 The estimated thresholds

3Abstract versions of Figure 8 are often used to explain the proportional-odds model (see, e.g.,
Agresti, 1990: Figure 9.2), but not typically to present the results of fitting the model to data and
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Coefficient Estimate Standard Error
Gender (male) 0.169 0.053
Religion (Yes) −0.168 0.078
University degree (Yes) 0.141 0.067
Age (linear) 10.659 5.404
Age (quadratic) 7.535 6.245
Age (cubic) 8.887 6.663
Norway 0.250 0.087
Australia 0.572 0.823
USA 1.176 0.087
Norway × Age (linear) −7.905 7.091
Australia × Age (linear) 9.264 6.312
USA × Age (linear) 10.868 6.647
Norway × Age (quadratic) −0.625 8.027
Australia × Age (quadratic) −17.716 7.034
USA × Age (quadratic) −7.692 7.352
Norway × Age (cubic) 0.485 8.568
Australia × Age (cubic) −2.762 7.385
USA × Age (cubic) −11.163 7.587
Thresholds
Too Little | About Right 0.449 0.106
About Right | Too Much 2.262 0.111

Table 4: Coefficients for a proportional-odds logit model regressing attitude towards
government efforts to help people in poverty on gender, age, religion, education, and
country. Age is represented in the model by a cubic orthogonal polynomial, and
interactions between age and country are included in the model.
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from the proportional-odds model are displayed as horizontal lines, dividing the latent

continuum into three categories. Notice that none of the fitted curves exceeds the

second cut-point, and it is therefore unnecessary to include this cut-point in the

graph; we do so to show explicitly that “too much” is never the modal response.

The scale at the upper left of the graph shows the range spanned by the middle half

of the standardized logistic distribution (i.e., the inter-quartile range, approximately

2 × 1.1 = 2.2 on the scale of the latent response), suggesting variation around the

expected response; this is not to be confused with a confidence interval around the

fitted response.

The patterns revealed by the effect displays are quite interesting: Even though

their countries do more than the others to help those in poverty, people in Norway and

Sweden are generally more likely than those in the United States or Australia to feel

that the effort is insufficient. Moreover, attitudes are relatively similar among all age

groups in the Scandinavian countries, with the exception of those at the highest ages,

while in the U.S. and Australia, there are more general age trends towards decreased

sympathy with the poor.

5 Discussion

Statistical models for polytomous response variables are increasingly employed in so-

cial research. Too frequently, however, the results of fitting these models are described

perfunctorily. Efforts to ensure careful model specification can be largely wasted if the

results are not conveyed clearly. Although it is difficult to interpret the coefficients of

complex statistical models that transform response probabilities nonlinearly, simply

discussing their signs and statistical significance tells us little about the structure of

not for the kind of partial-effect plot developed in this paper.
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Figure 6: Display of the interaction between age and country, showing the effects of
these variables on attitude towards government efforts to help people in poverty; the
graphs indicate the fitted probability for each of the three categories of the response
variable.

27



20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sweden

To
o 

Li
ttl

e

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Norway

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Australia

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

USA

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
bo

ut
 R

ig
ht

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

To
o 

M
uc

h

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age
20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age
20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

Figure 7: Display of the interaction between age and country, showing point-wise
95-percent confidence intervals around the fitted probabilities.
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the data. The approach described and illustrated in this paper, in contrast, goes a

long way towards clarifying the fit of multinomial logit and proportional-odds models

and simplifying their interpretation.

Effect displays allow us to visualize key portions of the response surface of a

statistical model, and thus to understand better how explanatory variables combine

to influence the response. The computation of effect displays for models of polytomous

response variables is fairly straightforward and can be implemented in most statistical

software. Computations associated with standard errors and confidence intervals for

these effect displays are more difficult, however. We intend to extend the effects

package for R (described in Fox, 2003) to cover multinomial and proportional-odds

logit models, making the construction of effect displays for these models essentially

automatic. Until that time, a program given in the appendix to this paper may be

employed for computing effects, their standard errors, and confidence limits.

6 Appendix: Computing

Fitted values and their standard errors for effect displays may be computed with

the following R function (program). R (Ihaka and Gentleman, 1996; R Development

Core Team, 2004) is a free, open-source implementation of the S statistical com-

puting environment now in widespread use, particularly among statisticians. The

polytomousEffects function uses the strategy for “safe prediction” described in

Hastie (1992: Section 7.3.3) to insure that fitted values are computed correctly in

models with terms (such as orthogonal polynomials and B-splines) whose basis de-

pends upon the data.

polytomousEffects <- function(mod, newdata, ci=c("logits", "probabilities"),
level=.95){
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# last modified 1 Jan 05 by J. Fox
#
# mod: a model of class "multinom" or "polr"
# newdata: a data frame with rows at which the effects are to be estimated
# ci: compute confidence intervals for the fitted probabilities using the
# the standard errors of the logits or of the probabilities
# level: confidence level
#
# Returns a data frame with newdata plus the fitted probabilities and logits,
# their standard errors, and the lower and upper bounds of the confidence
# intervals for the response-category probabilities

# define some local functions:

eff <- function(x0, mod, ...){
UseMethod("eff", mod)
}

eff.multinom <- function(x0, mod, ...){
d <- array(0, c(m, m - 1, p))
exp.x0.B <- as.vector(exp(x0 %*% B))
sum.exp.x0.B <- sum(exp.x0.B)
for (j in 1:(m-1)){

d[m, j,] <- - exp.x0.B[j]*x0
for (jj in 1:(m-1)){

d[j, jj,] <- if (jj != j)
- exp(x0 %*% (B[,jj] + B[,j]))*x0
else exp.x0.B[j]*(1 + sum.exp.x0.B - exp.x0.B[j])*x0

}
}

d <- d/(1 + sum.exp.x0.B)^2
V.mu <- rep(0, m)
for (j in 1:m){

dd <- as.vector(t(d[j,,]))
for (s in 1:r){

for (t in 1:r){
V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t]
}

}
}

mu <- exp(x0 %*% B)
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mu <- mu/(1 + sum(mu))
mu[m] <- 1 - sum(mu)
logits <- log(mu/(1 - mu))
V.logits <- V.mu/(mu^2 * (1 - mu)^2)
list(p=mu, std.err.p=sqrt(V.mu), logits=logits,

std.error.logits=sqrt(V.logits))
}

eff.polr <- function(x0, mod, ...){
eta0 <- x0 %*% b
mu <- rep(0, m)
mu[1] <- 1/(1 + exp(alpha[1] + eta0))
for (j in 2:(m-1)){

mu[j] <- exp(eta0)*(exp(alpha[j - 1]) - exp(alpha[j]))/
((1 + exp(alpha[j - 1] + eta0))*(1 + exp(alpha[j] + eta0)))

}
mu[m] <- 1 - sum(mu)
d <- matrix(0, m, r)
d[1, 1] <- - exp(alpha[1] + eta0)/(1 + exp(alpha[1] + eta0))^2
d[1, m:r] <- - exp(alpha[1] + eta0)*x0/(1 + exp(alpha[1] + eta0))^2
for (j in 2:(m-1)){

d[j, j-1] <- exp(alpha[j-1] + eta0)/(1 + exp(alpha[j-1] + eta0))^2
d[j, j] <- - exp(alpha[j] + eta0)/(1 + exp(alpha[j] + eta0))^2
d[j, m:r] <- exp(eta0)*(exp(alpha[j]) - exp(alpha[j-1]))*

(exp(alpha[j-1] + alpha[j] + 2*eta0) - 1) * x0 /
(((1 + exp(alpha[j-1] + eta0))^2)*
((1 + exp(alpha[j] + eta0))^2))

}
d[m, m-1] <- exp(alpha[m-1] + eta0)/(1 + exp(alpha[m-1] + eta0))^2
d[m, m:r] <- exp(alpha[m-1] + eta0)*x0/(1 + exp(alpha[m-1] + eta0))^2
V.mu <- rep(0, m)
for (j in 1:m){

dd <- d[j,]
for (s in 1:r){

for (t in 1:r){
V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t]
}

}
}

logits <- log(mu/(1 - mu))
V.logits <- V.mu/(mu^2 * (1 - mu)^2)
list(p=mu, std.err.p=sqrt(V.mu), logits=logits,
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std.error.logits=sqrt(V.logits))
}

logit2p <- function(logit) 1/(1 + exp(-logit))

# refit model to produce ’safe’ predictions when the model matrix includes
# terms -- e.g., poly(), bs() -- whose basis depends upon the data

formula.rhs <- formula(mod)[c(1,3)]
new <- newdata
newdata[[as.character(formula(mod)[2])]] <- rep(mod$lev[1], nrow(newdata))
extras <- setdiff(all.vars(formula(mod)), names(model.frame(mod)))
X <- if (length(extras) == 0) model.frame(mod)

else {
if (is.null(mod$call$data))

mod$call$data <- environment(formula(mod))
expand.model.frame(mod, extras)
}

nrow.X <- nrow(X)
data <- rbind(X[,names(newdata),drop=FALSE], newdata)
data$wt <- rep(0, nrow(data))
data$wt[1:nrow.X] <- 1
mod.matrix.all <- model.matrix(formula.rhs, data=data)
X0 <- mod.matrix.all[-(1:nrow.X),]
resp.names <- make.names(mod$lev, unique=TRUE)
if (inherits(mod, "multinom")){

resp.names <- c(resp.names[-1], resp.names[1]) # make the last level
# the reference level

mod <- multinom(formula(mod), data=data, Hess=TRUE, weights=wt)
B <- t(coef(mod))
V <- vcov(mod)
m <- ncol(B) + 1
p <- nrow(B)
r <- p*(m - 1)
}

else {
mod <- polr(formula(mod), data=data, Hess=TRUE, weights=wt)
X0 <- X0[,-1]
b <- coef(mod)
p <- length(b) # corresponds to p - 1 in the text
alpha <- - mod$zeta # intercepts are negatives of thresholds
m <- length(alpha) + 1
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r <- m + p - 1
indices <- c((p+1):r, 1:p)
V <- vcov(mod)[indices, indices]
for (j in 1:(m-1)){ # fix up the signs of the covariances

V[j,] <- -V[j,] # for the intercepts
V[,j] <- -V[,j]
}

}

n <- nrow(X0)
z <- qnorm(1 - (1 - level)/2)
ci <- match.arg(ci)
Lower <- Upper <- P <- Logit <- SE.P <- SE.Logit <- matrix(0, n, m)
colnames(Lower) <- paste("L.", resp.names, sep="")
colnames(Upper) <- paste("U.", resp.names, sep="")
colnames(P) <- paste("p.", resp.names, sep="")
colnames(Logit) <- paste("logit.", resp.names, sep="")
colnames(SE.P) <- paste("se.p.", resp.names, sep="")
colnames(SE.Logit) <- paste("se.logit.", resp.names, sep="")
for (i in 1:n){

res <- eff(X0[i,], mod) # compute effects
P[i,] <- prob <- res$p # fitted probabilities
SE.P[i,] <- se.p <- res$std.err.p # std. errors of fitted probs
Logit[i,] <- logit <- res$logits # fitted logits
SE.Logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits
if (ci == "probabilities"){ # confidence intervals

Lower[i,] <- prob - z*se.p
Upper[i,] <- prob + z*se.p
}

else{
Lower[i,] <- logit2p(logit - z*se.logit)
Upper[i,] <- logit2p(logit + z*se.logit)
}

}
cbind(new, P, Logit, SE.P, SE.Logit, Lower, Upper)
}

Using the polytomousEffects function, the graphs in Figures 5 and 7 were drawn

with the following R commands:

# Multinomial logit model example
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library(nnet)

BEPS <- read.table("BEPS.txt")
BEPS$vote <- factor(BEPS$vote, c("Liberal Democrat", "Labour", "Conservative"))

multinom.mod <- multinom(vote ~age + men + economic.cond.national +
economic.cond.household + Blair + Hague + Kennedy +
Europe*political.knowledge, data=BEPS)

predictors <- data.frame(expand.grid(list(
age=mean(BEPS$age),
men=.5,
economic.cond.national=mean(BEPS$economic.cond.national),
economic.cond.household=mean(BEPS$economic.cond.household),
Blair=mean(BEPS$Blair),
Hague=mean(BEPS$Hague),
Kennedy=mean(BEPS$Kennedy),
Europe=seq(1:11),
political.knowledge=0:3)))

effects.multinom <- polytomousEffects(multinom.mod, predictors)

attach(effects.multinom)

par(mfrow=c(3,4), mar=c(5,5,4,2) + 0.1, cex.main=2, font.lab=par("font.main"),
cex.axis=1.5, font.axis=1, cex.lab=par("cex.main"))

for (party in c("Labour", "Conservative", "Liberal Democrat")){
for (knowledge in 0:3){

plot(c(1,11), c(0,1),
type="n", xlab=if (party == "Liberal Democrat")

"Attitude Towards Europe" else "",
ylab=party,
main=if (party == "Labour") paste("Knowledge =", knowledge) else "")

for (prefix in c("p.", "L.", "U.")){
lines(1:11, get(paste(prefix, make.names(party), sep="")

)[political.knowledge == knowledge],
lty=if (prefix == "p.") 1 else 2,
lwd=if (prefix == "p.") 3 else 1, col="red")

}
}
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}

### Proportional-odds model example

library(MASS)

WVS <- read.table("WVS.txt")
WVS$poverty <- ordered(WVS$poverty,

levels=c(’Too Little’, ’About Right’, ’Too Much’))
WVS$country <- factor(WVS$country, c(’Sweden’, ’Norway’, ’Australia’, ’USA’))

polr.mod <- polr(poverty ~men + religion + degree + country*poly(age,3),
data=WVS)

predictors <- data.frame(expand.grid(list(
men=.5,
religion=mean(WVS$religion),
degree=mean(WVS$degree),
age=18:87,
country=c(’Sweden’, ’Norway’, ’Australia’, ’USA’))))

effects.polr <- polytomousEffects(polr.mod, predictors)

attach(effects.polr)

par(mfrow=c(3,4), mar=c(5,5,4,2) + 0.1, cex.main=2, font.lab=par("font.main"),
cex.axis=1.5, font.axis=1, cex.lab=par("cex.main"))

for (response in c("Too Little", "About Right", "Too Much")){
for (ctry in c("Sweden", "Norway", "Australia", "USA")){

plot(c(18, 87), c(0,1),
type="n", xlab=if(response == "Too Much") "Age" else "",
ylab=if(ctry == "Sweden") response else "",
main=if(response == "Too Little") ctry else "")
for (prefix in c("p.", "L.", "U.")){
lines(18:87,

get(paste(prefix, make.names(response), sep="")
)[country == ctry],

lty=if (prefix == "p.") 1 else 2,
lwd=if (prefix == "p.") 3 else 1, col="red")

}
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}
}

The code in this appendix and the data files for the examples are available on the

web at

<http://http://socserv.socsci.mcmaster.ca/jfox/Papers/polytomous-effect-displays.html>.
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