Homework Problems on Matrices

Soc. 761
Fall 2014

Most of these problems are adapted from P. J. Davis, The Mathematics of Matrices (Xerox College Pub., 1973). Unless otherwise indicated, the problems are meant for hand computation (i.e., using paper and pencil, possibly with the aid of a calculator), but you can check your work in R. Problems marked with an asterisk are optional.

1. Use the double-subscript notation to write down the elements of the second-last column of an $(m \times n)$ matrix A.
2. Use the double-subscript notation to write down the elements of the diagonal that is not the main diagonal of the order- n square matrix \mathbf{B} (i.e., the diagonal elements proceeding from lower left to upper right).
3. Find \mathbf{A}^{\prime} for

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

Find \mathbf{b} for $\mathbf{b}^{\prime}=[2,1,6,9,4]$.
4. * If A is an order- n square symmetric matrix, show that it can have as many as $\frac{1}{2} n(n+1)$ distinct (i.e., potentially different) elements in it.
5. Given the matrices

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{rr}
2 & 0 \\
7 & -1
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& \mathbf{C}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

find $\mathbf{A}+\mathbf{I}+\mathbf{0}$ and $\mathbf{A}+\mathbf{B}+\mathbf{C}$, [where \mathbf{I} is the order-2 identity matrix and $\mathbf{0}$ is the (2×2) zero matrix.]
6. If two matrices are symmetric, is their sum necessarily symmetric? Either make up an example to demonstrate your answer, prove it for the (2×2) case, or prove it in general.
7. For the matrices in problem 5 , find $\mathbf{A}-\mathbf{B}$.
8. Given the matrices

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{rrr}
2 & 0 & 2 \\
-1 & 1 & 1
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

compute $3 \mathbf{A}+2 \mathbf{B}$.
9. Compute the inner products of the following pairs of vectors:

$$
\begin{aligned}
& {[-1,2,1] \text { and }\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]} \\
& {[0, x, y] \text { and }[x, x, 3]} \\
& {[x, y, z] \text { and }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{aligned}
$$

10. Let \mathbf{a}_{1}^{\prime} and \mathbf{a}_{2}^{\prime} represent the two rows of the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right]
$$

and let \mathbf{b}_{1} and \mathbf{b}_{2} represent the two columns of the matrix

$$
\mathbf{B}=\left[\begin{array}{rr}
4 & -1 \\
1 & 0
\end{array}\right]
$$

Show how the matrix product $\mathbf{A B}$ is composed of the four inner products $\mathbf{a}_{1}^{\prime} \cdot \mathbf{b}_{1}, \mathbf{a}_{1}^{\prime} \cdot \mathbf{b}_{2}, \mathbf{a}_{2}^{\prime} \cdot \mathbf{b}_{1}$, and $\mathbf{a}_{2}^{\prime} \cdot \mathbf{b}_{2}$
11. Find the following matrix products:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right]} \\
& {[2,0,5]\left[\begin{array}{r}
9 \\
-1 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
1 & 4 & 0 \\
1 & -3 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 1 \\
5 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 6 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{aligned}
$$

12. If both $\mathbf{A B}$ and $\mathbf{B A}$ can be formed, what can be said about the orders of \mathbf{A} and \mathbf{B} ?
13. * Is the product of two symmetric matrices necessarily symmetric? Support your answer with an example or prove it for the (2×2) case.
14. Using R to do the computations, show that $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$ for the matrices

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

15. Express each of the following systems of equations in matrix form:
(a)

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =3 \\
x_{1}+3 x_{2}+2 x_{3} & =2 \\
3 x_{1}+4 x_{2}+3 x_{3} & =5
\end{aligned}
$$

(b)

$$
\begin{array}{r}
x_{1}-x_{2}=0 \\
3 x_{1}-2 x_{2}=1 \\
4 x_{1}-2 x_{2}=3
\end{array}
$$

(c)

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =6 \\
x_{1}+x_{3} & =0 \\
2 x_{1}-x_{2}+x_{3} & =5
\end{aligned}
$$

(d)

$$
\begin{array}{r}
2 x_{1}+x_{2}+x_{3}=0 \\
x_{1}+3 x_{2}+2 x_{3}=0
\end{array}
$$

16. Using R , find the inverse of each of the following matrices, or determine that the matrix is singular:

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & -\frac{7}{4}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rr}
-2 & -6 \\
3 & 9
\end{array}\right]} \\
& {\left[\begin{array}{rr}
7 & 5 \\
4 & 3
\end{array}\right]}
\end{aligned}
$$

17. Working by hand employing Gaussian elimination, find the inverse of the fourth matrix in problem 16 (or determine that the matrix has no inverse). * Optionally do this for the other three matrices in problem 16.
18. Using R, show by direct computation that $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ for

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ll}
1 & 6 \\
2 & 1
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]
\end{aligned}
$$

19. For the system of equation in problem 15 (c) [* and optionally for (a), (b), and (d)], using Gaussian elimination,
(a) determine the rank of the coefficient matrix;
(b) decide whether the system of equations is underdetermined, overdetermined, or has a unique solution; and
(c) if a solution exists, state the solution or solutions.
(d) Check your work with R.
20. The file Thurstone.txt on the course web site contains a correlation matrix among nine psychological tests; these data are a classical example in the literature on factor analysis. If you have an active Internet connection, you can read the data into an R data frame by the following command. (Otherwise, download the file and read it from a local disk.)

Thurstone <- read.table("http://socserv.socsci.mcmaster.ca/jfox/Courses/soc761/Thurstone.txt", header=TRUE)

Using R, find the eigenvalues and eigenvectors of this correlation matrix. (Note: the eigen function will take a numeric data frame as an argument, first "coercing" it to a matrix.)

