Homework Problems on Matrices

Soc. 761

Fall 2014

Most of these problems are adapted from P. J. Davis, *The Mathematics of Matrices* (Xerox College Pub., 1973). Unless otherwise indicated, the problems are meant for hand computation (i.e., using paper and pencil, possibly with the aid of a calculator), but you can check your work in R. Problems marked with an asterisk are optional.

- 1. Use the double-subscript notation to write down the elements of the second-last column of an $(m \times n)$ matrix \mathbf{A} .
- 2. Use the double-subscript notation to write down the elements of the diagonal that is not the main diagonal of the order-n square matrix \mathbf{B} (i.e., the diagonal elements proceeding from lower left to upper right).
- 3. Find \mathbf{A}' for

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \\ 5 & 6 \end{array} \right]$$

Find **b** for $\mathbf{b}' = [2, 1, 6, 9, 4].$

- 4. * If A is an order-n square symmetric matrix, show that it can have as many as $\frac{1}{2}n(n+1)$ distinct (i.e., potentially different) elements in it.
- 5. Given the matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 7 & -1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

find A + I + 0 and A + B + C, [where I is the order-2 identity matrix and 0 is the (2×2) zero matrix.]

- 6. If two matrices are symmetric, is their sum necessarily symmetric? Either make up an example to demonstrate your answer, prove it for the (2×2) case, or prove it in general.
- 7. For the matrices in problem 5, find $\mathbf{A} \mathbf{B}$.
- 8. Given the matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 2 \\ -1 & 1 & 1 \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$

1

compute $3\mathbf{A} + 2\mathbf{B}$.

9. Compute the inner products of the following pairs of vectors:

$$[-1,2,1]$$
 and $\begin{bmatrix} 4\\1\\3 \end{bmatrix}$

$$[0, x, y]$$
 and $[x, x, 3]$

$$[x, y, z]$$
 and $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$

10. Let \mathbf{a}_1' and \mathbf{a}_2' represent the two rows of the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 2 \\ 2 & -1 \end{array} \right]$$

and let \mathbf{b}_1 and \mathbf{b}_2 represent the two *columns* of the matrix

$$\mathbf{B} = \left[\begin{array}{cc} 4 & -1 \\ 1 & 0 \end{array} \right]$$

Show how the matrix product \mathbf{AB} is composed of the four inner products $\mathbf{a}_1' \cdot \mathbf{b}_1$, $\mathbf{a}_1' \cdot \mathbf{b}_2$, $\mathbf{a}_2' \cdot \mathbf{b}_1$, and $\mathbf{a}_2' \cdot \mathbf{b}_2$

11. Find the following matrix products:

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$$

$$[2,0,5] \begin{bmatrix} 9 \\ -1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 0 \\ 1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- 12. If both **AB** and **BA** can be formed, what can be said about the orders of **A** and **B**?
- 13. * Is the product of two symmetric matrices necessarily symmetric? Support your answer with an example or prove it for the (2×2) case.
- 14. Using R to do the computations, show that (AB)' = B'A' for the matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

15. Express each of the following systems of equations in matrix form:

(a)

$$2x_1 + x_2 + x_3 = 3$$

$$x_1 + 3x_2 + 2x_3 = 2$$

$$3x_1 + 4x_2 + 3x_3 = 5$$

(b)

$$\begin{aligned}
 x_1 - x_2 &= 0 \\
 3x_1 - 2x_2 &= 1 \\
 4x_1 - 2x_2 &= 3
 \end{aligned}$$

(c)

$$\begin{array}{rcl} x_1 + x_2 + x_3 & = & 6 \\ x_1 + x_3 & = & 0 \\ 2x_1 - x_2 + x_3 & = & 5 \end{array}$$

(d)

$$2x_1 + x_2 + x_3 = 0$$
$$x_1 + 3x_2 + 2x_3 = 0$$

16. Using R, find the inverse of each of the following matrices, or determine that the matrix is singular:

$$\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & -\frac{7}{4} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -6 \\ 3 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 5 \\ 4 & 3 \end{bmatrix}$$

- 17. Working by hand employing Gaussian elimination, find the inverse of the fourth matrix in problem 16 (or determine that the matrix has no inverse). * Optionally do this for the other three matrices in problem 16.
- 18. Using R, show by direct computation that $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ for

$$\mathbf{A} = \begin{bmatrix} 1 & 6 \\ 2 & 1 \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$$

- 19. For the system of equation in problem 15 (c) [* and optionally for (a), (b), and (d)], using Gaussian elimination,
 - (a) determine the rank of the coefficient matrix;
 - (b) decide whether the system of equations is underdetermined, overdetermined, or has a unique solution; and
 - (c) if a solution exists, state the solution or solutions.
 - (d) Check your work with R.
- 20. The file Thurstone.txt on the course web site contains a correlation matrix among nine psychological tests; these data are a classical example in the literature on factor analysis. If you have an active Internet connection, you can read the data into an R data frame by the following command. (Otherwise, download the file and read it from a local disk.)

Thurstone <- read.table("http://socserv.socsci.mcmaster.ca/jfox/Courses/soc761/Thurstone.txt", header=TRUE)

Using R, find the eigenvalues and eigenvectors of this correlation matrix. (Note: the eigen function will take a numeric data frame as an argument, first "coercing" it to a matrix.)