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1. Introduction
I The principal purpose of this lecture is to demonstrate how matrices can

be used to simplify the development of statistical models.

I A secondary purpose is to review, and extend, some material in linear
models.

I I will take up the following topics:
• Expressing linear models for regression, dummy regression, and

analysis of variance in matrix form.
• Deriving the least-squares coefficients using matrices.
• Distribution of the least-squares coefficients.
• The least-squares coefficients as maximum-likelihood estimators.
• Statistical inference for linear models.
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2. Linear Models in Matrix Form
I The general linear model is

= 0 + 1 1 + 2 2 + · · · + +

where
• is the value of the response variable for the th of observations.
• 1 2 are the values of regressors for observation . In linear

regression analysis, 1 2 are the values of quantitative
explanatory variables.

• 0 1 are + 1 parameters to be estimated from the data,
including the constant or intercept term, 0.

• is the random error variable for the th observation.
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I The statistical assumptions of the linear model concern the behaviour of
the errors; the standard assumptions include:
• Linearity : The average error is zero, ( ) = 0; equivalently, ( ) =

0 + 1 1 + 2 2 + · · · + .
• Constant error variance: The variance of the errors is the same for all

observations, ( ) = 2; equivalently, ( ) = 2.
• Normality : The errors are normally distributed, and so (0 2);

equivalently, ( 0 + 1 1 + · · · + 2).
• Independence: The errors are independently sampled — that is and

are independent for 6= ; equivalently, and are independent
• Either the -values are fixed (with respect to repeated sampling) or, if

random, the s are independent of the errors.
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I The linear model may be rewritten as

= [1 1 2 ]

0

1

2

·
·
·

+

= x0
(1× +1)( +1×1)

+

• There is one such equation for each observation, = 1 .
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• Collecting these equations into a single matrix equation:
1

2

·
·
·

=

1 11 · · · 1

1 21 · · · 2

·
·
·

·
·
·

·
·
·

1 1 · · ·

0

1... +

1

2

·
·
·

y
( ×1)

= X
( × +1)( +1×1)

+
( ×1)

– The X matrix in the linear model is called the model matrix (or the
design matrix).

– Note the column of 1s for the constant.

Sociology 761 Copyright c°2014 by John Fox



Linear Models Using Matrices 6

I Similarly, the assumptions of linearity, constant variance, normality, and
independence can be recast as

(0 2I )

where (0 2I ) denotes the multivariate-normal distribution with
• mean vector 0,
• and covariance matrix

2I =

2 0 · · · 0
0 2 · · · 0
... ... . . . ...
0 0 · · · 2

• equivalently,
y (X 2I )
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2.1 Dummy Regression Models
I The matrix equation y = X + suffices not just for linear regression

models, but — with suitable specification of the regressors — for linear
models generally.

I For example, consider the dummy-regression model
= + + + ( ) +

where
• is income in dollars,
• is years of education,
• and the dummy regressor is coded 1 for men and 0 for women.
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I Recall that this model implies potentially different intercepts and slopes
— that is, potentially different regression lines — for the two groups:
• for men,

= + + 1 + ( 1) +

= ( + ) + ( + ) +

• for women
= + + 0 + ( 0) +

= + +

• and so is the difference in intercepts between men and women, and
is the difference in slopes.

• Because men and women can have different slopes, this model
permits gender to interact with education in determining income.
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I Written as a matrix equation, the dummy-regression model becomes.
1

...
1

1+1...

=

1 1 0 0
... ... ... ...
1

1
0 0

1
1+1 1 1+1... ... ... ...

1 1

+

1
...

1

1+1...

y = X +

where, for clarity, the 1 observations for women precede the 1

observations for men.
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I Reminder : When a categorical explanatory variable has more than two
(say, ) categories, it generates a set of 1 dummy regressors —
that is, one fewer dummy variable than the number of categories.
• For example, a five-category regional classification might produce the

following four dummy regressors:
Region 1 2 3 4

East 1 0 0 0
Quebec 0 1 0 0
Ontario 0 0 1 0
Prairies 0 0 0 1
BC 0 0 0 0

• Here, BC is arbitrarily selected as the baseline category, to which
other categories will implicitly be compared.
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2.2 Analysis of Variance Models
I Analysis of variance or ANOVA models are linear models in which all of

the explanatory variables are factors — that is, categorical variables.

I The simplest case is one-way ANOVA, where there is a single factor.
• The one-way ANOVA model is usually written with double-subscript

notation as
= + +

for levels = 1 of the factor, and observations = 1 of
level .
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I The matrix form of the one-way ANOVA model is

group 1

group 2

group
1

group

11
...

1 1

12
...

2 2...
1 1

...
1 1

1
...

=

1 1 0 · · · 0 0
... ... ... ... ...
1 1 0 · · · 0 0
1 0 1 · · · 0 0
... ... ... ... ...
1 0 1 · · · 0 0
... ... ... ... ...
1 0 0 · · · 1 0
... ... ... ... ...
1 0 0 · · · 1 0
1 0 0 · · · 0 1
... ... ... ... ...
1 0 0 · · · 0 1

1

2
...

1

+

11
...

1 1

12
...

2 2...
1 1

...
1 1

1
...

y = X +
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I This formulation of the model is problematic because there is a
redundant column in the model matrix (which is therefore of deficient
rank ):
• For example, the first column is the sum of the remaining columns.
• This will create a problem when we try to fit the model by least

squares, but more fundamentally, it reflects a redundancy among the
parameters of the model.

I A common solution to the problem is to reduce the parameters by one.
There are many ways to do this, all providing equivalent fits to the data.
For example:
• Eliminating the constant, , produces a so-called means model,

= +

where now represents the population mean of level .
• Eliminating one of the produces a dummy-variable solution, with

the omitted coefficient corresponding to the baseline category (here
category ):
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11
...

1 1

12
...

2 2...
1 1

...
1 1

1
...

=

1 1 0 · · · 0
... ... ... ...
1 1 0 · · · 0
1 0 1 · · · 0
... ... ... ...
1 0 1 · · · 0
... ... ... ...
1 0 0 · · · 1
... ... ... ...
1 0 0 · · · 1
1 0 0 · · · 0
... ... ... ...
1 0 0 · · · 0

1

2
...

1

+

11
...

1 1

12
...

2 2...
1 1

...
1 1

1
...

y = X +
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I Alternatively, we can place a linear constraint on the parameters, most
commonly, the sigma constraintX

=1

= 0

• Under this constraint

=
1X

=1

need not appear explicitly, producing the model matrix
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X
( × )

=

group 1

group 2

group 1

group

( ) ( 1) ( 2) · · · ( 1)
1 1 0 · · · 0
... ... ... ...
1 1 0 · · · 0
1 0 1 · · · 0
... ... ... ...
1 0 1 · · · 0
... ... ... ...
1 0 0 · · · 1
... ... ... ...
1 0 0 · · · 1
1 1 1 · · · 1
... ... ... ...
1 1 1 · · · 1
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3. Least-Squares Fit
I The fitted linear model is

y = Xb + e

where
• b = [ 0 1 ]0 is the vector of fitted coefficients.
• e = [ 1 2 ]0 = y Xb is the vector of residuals.

I We want the coefficient vector b that minimizes the residual sum of
squares, expressed as a function of b:

(b) =
X

2 = e0e = (y Xb)0(y Xb)

= y0y y0Xb b0X0y + b0X0Xb
= y0y (2y0X)b+ b0(X0X)b

• The last line of the equation is justified because y0
(1× )

X
( × +1)

b
( +1×1)

and

b0
(1× +1)

X0
( +1× )

y
( ×1)

are both scalars, and consequently equal.
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I Noting that y0y is a constant (with respect to b), (2y0X)b is a linear
function of b, and b0(X0X)b is a quadratic form in b,

(b)

b
= 0 2X0y + 2X0Xb

• Setting the derivative to 0 produces the normal equations for the linear
model

2X0y + 2X0Xb = 0

X0Xb = X0y
a system of + 1 linear equations in + 1 unknowns (i.e., 0 1 ).

• We can solve the normal equations uniquely for b if as the ( + 1) ×
( + 1) matrix X0X is nonsingular, which will be the case as long as
– there are at least as many observations as coefficients — that is,

+ 1.
– no column of the model matrix X is a perfect linear function of the

other columns.
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• When X0X is nonsingular, the least-squares solution is
b = (X0X) 1X0y

• Looking inside of the matrices in the normal equations,
– the matrix X0X contains sums of squares and cross-products for the

regressors (including the column of 1s).
– X0y contains sums of products between the regressors and the

response.
• The normal equations, therefore, are

0 + 1

P
1 + · · · + P

=
P

0

P
1 + 1

P
2
1 + · · · + P

1 =
P

1
... ...
0

P
+ 1

P
1 + · · · +

P
2 =

P
I An example, using Duncan’s regression of occupational prestige on the

income and education levels of 45 U.S. occupations:

Sociology 761 Copyright c°2014 by John Fox



Linear Models Using Matrices 20

• Matrices of sums of squares and products:

X0X =
45 1884 2365

1884 105 148 122 197
2365 122 197 163 265

X0y =
2146

118 229
147 936

• The inverse of X0X:

(X0X) 1 =
0 1021058996 0 0008495732 0 0008432006
0 0008495732 0 0000801220 0 0000476613
0 0008432006 0 0000476613 0 0000540118

• The regression coefficients:

b = (X0X) 1X0y =
6 06466
0 59873
0 54583

Sociology 761 Copyright c°2014 by John Fox

Linear Models Using Matrices 21

4. Distribution of the Least-Squares
Coefficients
I It is simple to show that least-squares coefficients are unbiased

estimators of the population regression coefficients:
b = (X0X) 1X0y

and so (assuming a fixed model matrix X),
(b) = (X0X) 1X0 (y) = (X0X) 1X0(X ) =

I The covariance matrix of b follows from the covariance matrix of y,
which is 2I :

(b) =
h
(X0X) 1X0

i
(y)
h
(X0X) 1X0

i0
=
h
(X0X) 1X0

i
2I
h
(X0X) 1X0

i0
= 2(X0X) 1X0X(X0X) 1

= 2(X0X) 1
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• Because the error variance 2 is an unknown parameter, the covari-
ance matrix of b must be estimated:b (b) = 2(X0X) 1

where
2 =

P
2

1
is the estimated error variance, and is the residual for observation .

I Because the response vector y is multinormally distributed, so is b; that
is

b +1

h
2(X0X) 1

i
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I Notice the strong analogy between the formulas for the slope coefficient
in least-squares simple regression (i.e., with a single ) and for the
coefficients of the linear model in matrix form:

Simple Regression Linear Model
Model = + + y = X +

= +

Least-Squares Estimator =

PP
2

b = (X0X) 1X0y

=
¡P

2
¢ 1P

Sampling Variance ( ) =
2P
2

(b) = 2(X0X) 1

= 2
¡P

2
¢ 1

Distribution bh
2
¡P

2
¢ 1
i

+1

h
2(X0X) 1

i
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• In the scalar formulas the following short-hand notation is used:
=

=
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5. Maximum-Likelihood Estimation of the
Normal Linear Model
I The standard assumptions of the linear model provide a probability

model for the data y (thinking of the model matrix X as fixed or
conditioning on it):

y (X 2I )
• Then, from the formula for the normal distribution,

(y) =
1

(2 2) 2
exp

(y X )0(y X )

2 2

¸

– Note: exp( ) in a formula means , for the constant ' 2 718.
I In maximum-likelihood estimation, recall, we find the values of the

parameters that make the probability of observing the data as high as
possible.
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• The likelihood function is the same as the probability (or probability-
density) of the data, except thought of as a function of the parameters.

• Here,

( 2) =
¡
2 2

¢ 2
exp

(y X )0(y X )

2 2

¸
I As is usually the case, it is simpler to work with the log of the likelihood.
• Whatever values of the parameters maximize the log-likelihood also

maximize the likelihood, since the log function is monotone (strictly
increasing).

• For the linear model:
log ( 2) =

2
log 2

2
log 2 1

2 2
(y X )0(y X )

• To justify this result, recall that taking logs turns multiplication
into addition, division into subtraction, and exponentiation into
multiplication; moreover, log = .
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I To maximize the log-likelihood, we need its derivatives with respect to
the parameters.
• Finding the derivatives is simplified by noticing that (y X )0(y X )

is just the sum of squared errors.
• Differentiating,

log ( 2)
=

1

2 2
(2X0X 2X0y)

log ( 2)
2

=
2

μ
1
2

¶
+
1
4
(y X )0(y X )

• Setting the partial derivatives to 0 and solving for maximum-likelihood
estimates of the parameters producesb = (X0X) 1X0y

b2 = (y Xb)0(y Xb)
=
e0e

where e = y Xb is the vector of residuals.
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I Notice that
• The MLE b is just the least-squares coefficients b.
• The MLE of the error variance, b2 =P 2 is biased.

– The usual unbiased estimator, 2, divides by residual degrees of
freedom 1 rather than by .

– The MLE is consistent, however, since the bias (along with the
variance of the estimator) goes to zero as get larger.
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6. Statistical Inference for Least-Squares
Estimation
I Statistical inference for based on the least-squares coefficients b uses

the estimated covariance matrix b (b) = 2(X0X) 1.

I The simplest case is inference for an individual coefficient, :
• The standard error of the coefficient is the square root of the th

diagonal entry of the estimated covariance matrix (indexing the matrix
from 0):

SE( ) =
q

2[(X0X) 1]

• Because the error variance has been estimated, hypothesis tests and
confidence intervals use the -distribution with 1 degress of
freedom.
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• For example:
– To test

0: = 0
we compute

0 = SE( )
– To form a 95-percent confidence interval for we take

= ± 975 1SE( )
where 975 1 is the .975 quantile of the -distribution with 1
degrees of freedom.

I More generally, suppose that we want to test the linear hypothesis
0: L
( × +1)( +1×1)

= c
( ×1)

where the hypothesis matrix L and the right-hand-side vector c (usually
0) encode the hypothesis.
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• For example, in Duncan’s regression of prestige on income and
education, the hypothesis matrix

L =
0 1 0
0 0 1

¸
and right-hand-side vector

c =
0
0

¸
specify the hypothesis

0: 1 = 0 2 = 0
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• Likewise, again for Duncan’s regression, the one-row hypothesis
matrix

L =
£
0 1 1

¤
and right-hand-side c = [0] correspond to the hypothesis

0: 1 2 = 0

that is
0: 1 = 2

• Under the hypothesis 0, the statistic

0 =
(Lb c)0

h
L(X0X) 1L0

i 1

(Lb c)

2

follows an -distribution with and 1 degrees of freedom.
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I Example: For Duncan’s regression, the sum of squared residuals is
e0e = 7506 699, and so

2 =
7506 699

45 2 1
= 178 7309

• The estimated covariance matrix of the least-squares coefficients isb (b) = 2(X0X) 1

= 178 7309
0 1021058996 0 0008495732 0 0008432006
0 0008495732 0 0000801220 0 0000476613
0 0008432006 0 0000476613 0 0000540118

=
18 249387 0 151844 0 150705
0 151844 0 014320 0 008519
0 150705 0 008519 0 009653
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• The estimated standard errors of the regression coefficients are,
therefore,

SE( 0) = 18 249387 = 4 272

SE( 1) = 0 014320 = 0 1197

SE( 2) = 0 009653 = 0 09825

• and, a 95-percent confidence interval for 1 (the income coefficient) is
1 = 0 5987± 2 0181× 0 1197
= 0 5987± 0 2416
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• To test the hypothesis that both slope coefficients are 0,
0: 1 = 2 = 0

we have
L =

0 1 0
0 0 1

¸
Lb =

0 1 0
0 0 1

¸ 6 06466
0 59873
0 54583

=
0 59873
0 54583

¸
(i.e., the two slopes)
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0 =
(Lb)0

h
L(X0X) 1L0

i 1

Lb

2

=

[0 599 0 546]
0 1 0
0 0 1

¸ 0 1021 0 0008 0 0008
0 0008 0 0001 0 0000
0 0008 0 0000 0 0001

0 0
1 0
0 1

1

× 0 599
0 546

¸
2× 178 7309

= 101 22 with 2 and 42 degrees of freedom, ' 0
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• To test the hypothesis that the slopes are equal:
L =

£
0 1 1

¤
Lb =

£
0 1 1

¤ 6 06466
0 59873
0 54583

= 0 05290 (i.e., the difference in slopes)

0 =
(Lb)0

h
L(X0X) 1L0

i 1

Lb

2

=

0 053
£
0 1 1

¤ 0 1021 0 0008 0 0008
0 0008 0 0001 0 0000
0 0008 0 0000 0 0001

0
1
1

1

0 053

1× 178 7309
= 0 068 with 1 and 42 degrees of freedom, = 80
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