Lecture Notes
 Linear Models Using Matrices

Copyright © 2014 by John Fox

1. Introduction

- The principal purpose of this lecture is to demonstrate how matrices can be used to simplify the development of statistical models.
- A secondary purpose is to review, and extend, some material in linear models.
- I will take up the following topics:
- Expressing linear models for regression, dummy regression, and analysis of variance in matrix form.
- Deriving the least-squares coefficients using matrices.
- Distribution of the least-squares coefficients.
- The least-squares coefficients as maximum-likelihood estimators.
- Statistical inference for linear models.

2. Linear Models in Matrix Form

- The general linear model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\varepsilon_{i}
$$

where

- y_{i} is the value of the response variable for the i th of n observations.
- $x_{i 1}, x_{i 2}, \ldots, x_{i k}$ are the values of k regressors for observation i. In linear regression analysis, $x_{i 1}, x_{i 2}, \ldots, x_{i k}$ are the values of k quantitative explanatory variables.
- $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ are $k+1$ parameters to be estimated from the data, including the constant or intercept term, β_{0}.
- ε_{i} is the random error variable for the i th observation.
- The statistical assumptions of the linear model concern the behaviour of the errors; the standard assumptions include:
- Linearity: The average error is zero, $E\left(\varepsilon_{i}\right)=0$; equivalently, $E\left(y_{i}\right)=$ $\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}$.
- Constant error variance: The variance of the errors is the same for all observations, $V\left(\varepsilon_{i}\right)=\sigma_{\varepsilon}^{2}$; equivalently, $V\left(y_{i}\right)=\sigma_{\varepsilon}^{2}$.
- Normality: The errors are normally distributed, and so $\varepsilon_{i} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$; equivalently, $y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}, \sigma_{\varepsilon}^{2}\right)$.
- Independence: The errors are independently sampled - that is ε_{i} and ε_{j} are independent for $i \neq j$; equivalently, y_{i} and y_{j} are independent.
- Either the x-values are fixed (with respect to repeated sampling) or, if random, the x s are independent of the errors.
- The linear model may be rewritten as

$$
\begin{aligned}
y_{i} & =\left[1, x_{i 1}, x_{i 2}, \ldots, x_{i k}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\cdot \\
\cdot \\
\cdot \\
\beta_{k}
\end{array}\right]+\varepsilon_{i} \\
& =\underset{(1 \times k+1)(k+1 \times 1)}{\mathbf{x}_{i}^{\prime}}+\varepsilon_{i}
\end{aligned}
$$

- There is one such equation for each observation, $i=1, \ldots, n$.
- Collecting these n equations into a single matrix equation:

$$
\begin{aligned}
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right] } & =\underset{(n \times 1)}{\mathbf{y}}
\end{aligned}=\underset{(n \times k+1)}{\left[\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 k} \\
1 & x_{21} & \cdots & x_{2 k} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
1 & x_{n 1} & \cdots & x_{n k}
\end{array}\right]}\left[\begin{array}{c}
\boldsymbol{\beta} \\
\boldsymbol{X} \\
\beta_{0} \\
\beta_{1 \times 1)} \\
\beta_{1} \\
\beta_{k}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\varepsilon_{n}
\end{array}\right]
$$

- The X matrix in the linear model is called the model matrix (or the design matrix).
- Note the column of 1 s for the constant.
- Similarly, the assumptions of linearity, constant variance, normality, and independence can be recast as

$$
\varepsilon \sim N_{n}\left(\mathbf{0}, \sigma_{\varepsilon}^{2} \mathbf{I}_{n}\right)
$$

where $N_{n}\left(\mathbf{0}, \sigma_{\varepsilon}^{2} \mathbf{I}_{n}\right)$ denotes the multivariate-normal distribution with

- mean vector 0 ,
- and covariance matrix

$$
\sigma_{\varepsilon}^{2} \mathbf{I}_{n}=\left[\begin{array}{cccc}
\sigma_{\varepsilon}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{\varepsilon}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{\varepsilon}^{2}
\end{array}\right]
$$

- equivalently,

$$
\mathbf{y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma_{\varepsilon}^{2} \mathbf{I}_{n}\right)
$$

2.1 Dummy Regression Models

- The matrix equation $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$ suffices not just for linear regression models, but - with suitable specification of the regressors - for linear models generally.
- For example, consider the dummy-regression model

$$
y_{i}=\alpha+\beta x_{i}+\gamma d_{i}+\delta\left(x_{i} d_{i}\right)+\varepsilon_{i}
$$

where

- y is income in dollars,
- x is years of education,
- and the dummy regressor d is coded 1 for men and 0 for women.
- Recall that this model implies potentially different intercepts and slopes - that is, potentially different regression lines - for the two groups:
- for men,

$$
\begin{aligned}
y_{i} & =\alpha+\beta x_{i}+\gamma 1+\delta\left(x_{i} 1\right)+\varepsilon_{i} \\
& =(\alpha+\gamma)+(\beta+\delta) x_{i}+\varepsilon_{i}
\end{aligned}
$$

- for women

$$
\begin{aligned}
y_{i} & =\alpha+\beta x_{i}+\gamma 0+\delta\left(x_{i} 0\right)+\varepsilon_{i} \\
& =\alpha+\beta x_{i}+\varepsilon_{i}
\end{aligned}
$$

- and so γ is the difference in intercepts between men and women, and δ is the difference in slopes.
- Because men and women can have different slopes, this model permits gender to interact with education in determining income.
- Written as a matrix equation, the dummy-regression model becomes.

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
\vdots \\
y_{n_{1}} \\
\hline y_{n_{1}+1} \\
\vdots \\
y_{n}
\end{array}\right] }=\left[\begin{array}{llll}
1 & x_{1} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n_{1}} & 0 & 0 \\
\hline 1 & x_{n_{1}+1} & 1 & x_{n_{1}+1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & 1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1} \\
\vdots \\
\frac{\varepsilon_{n_{1}}}{\varepsilon_{n_{1}+1}} \\
\vdots \\
\varepsilon_{n}
\end{array}\right] \\
& \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
\end{aligned}
$$

where, for clarity, the n_{1} observations for women precede the $n-n_{1}$ observations for men.

- Reminder: When a categorical explanatory variable has more than two (say, m) categories, it generates a set of $m-1$ dummy regressors that is, one fewer dummy variable than the number of categories.
- For example, a five-category regional classification might produce the following four dummy regressors:

Region	d_{1}	d_{2}	d_{3}	d_{4}
East	1	0	0	0
Quebec	0	1	0	0
Ontario	0	0	1	0
Prairies	0	0	0	1
BC	0	0	0	0

- Here, BC is arbitrarily selected as the baseline category, to which other categories will implicitly be compared.

2.2 Analysis of Variance Models

- Analysis of variance or ANOVA models are linear models in which all of the explanatory variables are factors - that is, categorical variables.
- The simplest case is one-way ANOVA, where there is a single factor.
- The one-way ANOVA model is usually written with double-subscript notation as

$$
y_{i j}=\mu+\alpha_{j}+\varepsilon_{i j}
$$

for levels $j=1, \ldots, m$ of the factor, and observations $i=1, \ldots, n_{j}$ of level j.

- The matrix form of the one-way ANOVA model is

- This formulation of the model is problematic because there is a redundant column in the model matrix (which is therefore of deficient rank m):
- For example, the first column is the sum of the remaining columns.
- This will create a problem when we try to fit the model by least squares, but more fundamentally, it reflects a redundancy among the parameters of the model.
- A common solution to the problem is to reduce the parameters by one. There are many ways to do this, all providing equivalent fits to the data.
For example:
- Eliminating the constant, μ, produces a so-called means model,

$$
y_{i j}=\alpha_{j}+\varepsilon_{i j}
$$

where α_{j} now represents the population mean of level j.

- Eliminating one of the α_{j} produces a dummy-variable solution, with the omitted coefficient corresponding to the baseline category (here category m):
$\left[\begin{array}{l}y_{11} \\ \vdots \\ y_{n_{1}, 1} \\ y_{12} \\ \vdots \\ y_{n_{2}, 2} \\ \vdots \\ \hline y_{1, m-1} \\ \vdots \\ y_{n_{m-1}, m-1} \\ y_{1 m} \\ \vdots \\ y_{n_{m}, m}\end{array}\right]=\left[\begin{array}{ccccc}1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ \hline 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \hline \vdots & \vdots & \vdots & & \vdots \\ \hline 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \hline 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & 0\end{array}\right]\left[\begin{array}{l}\mu \\ \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{m-1}\end{array}\right]+\left[\begin{array}{l}\varepsilon_{11} \\ \vdots \\ \varepsilon_{n_{1}, 1} \\ \varepsilon_{12} \\ \vdots \\ \varepsilon_{n_{2}, 2} \\ \vdots \\ \hline \varepsilon_{1, m-1} \\ \vdots \\ \varepsilon_{n_{m-1}, m-1} \\ \varepsilon_{1 m} \\ \vdots \\ \varepsilon_{n_{m}, m}\end{array}\right]$
- Alternatively, we can place a linear constraint on the parameters, most commonly, the sigma constraint
- Under this constraint

$$
\sum_{j=1}^{m} \alpha_{j}=0
$$

$$
\alpha_{m}=-\sum_{j=1}^{m-1} \alpha_{j}
$$

need not appear explicitly, producing the model matrix
\quad group 1
$\underset{(n \times m)}{\mathbf{X}}=$
group 2

\quad group $m-1\left[\begin{array}{rrrrr}(\mu) & \left(\alpha_{1}\right) & \left(\alpha_{2}\right) & \cdots & \left(\alpha_{m-1}\right) \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ \hline 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \hline \vdots & \vdots & \vdots & & \vdots \\ \hline 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \hline 1 & -1 & -1 & \cdots & -1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & -1 & -1 & \cdots & -1\end{array}\right]$

3. Least-Squares Fit

- The fitted linear model is

$$
\mathbf{y}=\mathbf{X b}+\mathbf{e}
$$

where

- $\mathbf{b}=\left[b_{0}, b_{1}, \ldots, b_{k}\right]^{\prime}$ is the vector of fitted coefficients.
- $\mathbf{e}=\left[e_{1}, e_{2}, \ldots, e_{n}\right]^{\prime}=\mathbf{y}-\mathbf{X b}$ is the vector of residuals.
- We want the coefficient vector b that minimizes the residual sum of squares, expressed as a function of b :

$$
\begin{aligned}
S(\mathbf{b}) & =\sum e_{i}^{2}=\mathbf{e}^{\prime} \mathbf{e}=(\mathbf{y}-\mathbf{X} \mathbf{b})^{\prime}(\mathbf{y}-\mathbf{X} \mathbf{b}) \\
& =\mathbf{y}^{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{X} \mathbf{b}-\mathbf{b}^{\prime} \mathbf{X}^{\prime} \mathbf{y}+\mathbf{b}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \mathbf{b} \\
& =\mathbf{y}^{\prime} \mathbf{y}-\left(2 \mathbf{y}^{\prime} \mathbf{X}\right) \mathbf{b}+\mathbf{b}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}
\end{aligned}
$$

- The last line of the equation is justified because $\underset{(1 \times n)}{\mathbf{y}^{\prime}} \underset{(n \times k+1)(k+1 \times 1)}{\mathbf{X}}$ and $\underset{(1 \times k+1)(k+1 \times n)}{\mathbf{b}^{\prime}} \underset{(n \times 1)}{\mathbf{X}} \underset{\text { I }}{ }$ are both scalars, and consequently equal.
- Noting that $y^{\prime} \mathbf{y}$ is a constant (with respect to \mathbf{b}), ($2 \mathbf{y}^{\prime} \mathbf{X}$)b is a linear function of b, and $b^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}$ is a quadratic form in b,

$$
\frac{\partial S(\mathbf{b})}{\partial \mathbf{b}}=\mathbf{0}-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \mathbf{b}
$$

- Setting the derivative to 0 produces the normal equations for the linear model

$$
\begin{aligned}
-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X b} & =\mathbf{0} \\
\mathbf{X}^{\prime} \mathbf{X b} & =\mathbf{X}^{\prime} \mathbf{y}
\end{aligned}
$$

a system of $k+1$ linear equations in $k+1$ unknowns (i.e., $b_{0}, b_{1}, \ldots, b_{k}$).

- We can solve the normal equations uniquely for \mathbf{b} if as the $(k+1) \times$ $(k+1)$ matrix $\mathbf{X}^{\prime} \mathbf{X}$ is nonsingular, which will be the case as long as - there are at least as many observations as coefficients - that is, $n \geq k+1$.
- no column of the model matrix \mathbf{X} is a perfect linear function of the other columns.
- When $\mathbf{X}^{\prime} \mathbf{X}$ is nonsingular, the least-squares solution is

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Looking inside of the matrices in the normal equations,
- the matrix $\mathbf{X}^{\prime} \mathbf{X}$ contains sums of squares and cross-products for the regressors (including the column of 1 s).
- X^{\prime} y contains sums of products between the regressors and the response.
- The normal equations, therefore, are

$$
\begin{aligned}
b_{0} n+b_{1} \sum x_{i 1} & +\cdots+b_{k} \sum x_{i k}
\end{aligned}=\sum y_{i}, ~=b_{k} \sum x_{i 1} x_{i k}=\sum x_{i 11} y_{i} .
$$

- An example, using Duncan's regression of occupational prestige on the income and education levels of 45 U.S. occupations:
- Matrices of sums of squares and products:

$$
\begin{aligned}
& \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{rrr}
45 & 1884 & 2365 \\
1884 & 105,148 & 122,197 \\
2365 & 122,197 & 163,265
\end{array}\right] \\
& \mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{r}
2146 \\
118,229 \\
147,936
\end{array}\right]
\end{aligned}
$$

- The inverse of $\mathbf{X}^{\prime} \mathbf{X}$:

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{rrr}
0.1021058996 & -0.0008495732 & -0.0008432006 \\
-0.0008495732 & 0.0000801220 & -0.0000476613 \\
-0.0008432006 & -0.0000476613 & 0.0000540118
\end{array}\right]
$$

- The regression coefficients:

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{r}
-6.06466 \\
0.59873 \\
0.54583
\end{array}\right]
$$

4. Distribution of the Least-Squares Coefficients

- It is simple to show that least-squares coefficients are unbiased estimators of the population regression coefficients:

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

and so (assuming a fixed model matrix \mathbf{X}),

$$
E(\mathbf{b})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E(\mathbf{y})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta})=\boldsymbol{\beta}
$$

- The covariance matrix of b follows from the covariance matrix of y, which is $\sigma_{\varepsilon}^{2} \mathbf{I}_{n}$:

$$
\begin{aligned}
V(\mathbf{b}) & =\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right] V(\mathbf{y})\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right]^{\prime} \\
& =\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right] \sigma_{\varepsilon}^{2} \mathbf{I}_{n}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right]^{\prime} \\
& =\sigma_{\varepsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma_{\varepsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

- Because the error variance σ_{ε}^{2} is an unknown parameter, the covariance matrix of b must be estimated:

$$
\widehat{V}(\mathbf{b})=s_{e}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

where

$$
s_{e}^{2}=\frac{\sum e_{i}^{2}}{n-k-1}
$$

is the estimated error variance, and e_{i} is the residual for observation i.

- Because the response vector y is multinormally distributed, so is b ; that is

$$
\mathbf{b} \sim N_{k+1}\left[\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]
$$

- Notice the strong analogy between the formulas for the slope coefficient in least-squares simple regression (i.e., with a single x) and for the coefficients of the linear model in matrix form:

	Simple Regression	Linear Model
Model	$y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$	$\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
	$y^{*}=x^{*} \beta+\varepsilon$	
Least-Squares Estimator	$b=\frac{\sum x^{*} y^{*}}{\sum x^{* 2}}$	$\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$
	$=\left(\sum x^{* 2}\right)^{-1} \sum x^{*} y^{*}$	
Sampling Variance	$V(b)=\frac{\sigma_{\varepsilon}^{2}}{\sum x^{* 2}}$	$V(\mathbf{b})=\sigma_{\varepsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
	$=\sigma_{\varepsilon}^{2}\left(\sum x^{* 2}\right)^{-1}$	
Distribution	$b \sim$	$\mathbf{b} \sim$
	$N\left[\beta, \sigma_{\varepsilon}^{2}\left(\sum x^{* 2}\right)^{-1}\right]$	$N_{k+1}\left[\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]$

- In the scalar formulas the following short-hand notation is used:

$$
\begin{aligned}
& x^{*}=x_{i}-\bar{x} \\
& y^{*}=y_{i}-\bar{y}
\end{aligned}
$$

5. Maximum-Likelihood Estimation of the Normal Linear Model

- The standard assumptions of the linear model provide a probability model for the data \mathbf{y} (thinking of the model matrix \mathbf{X} as fixed or conditioning on it):

$$
\mathbf{y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma_{\varepsilon}^{2} \mathbf{I}_{n}\right)
$$

- Then, from the formula for the normal distribution,

$$
p(\mathbf{y})=\frac{1}{\left(2 \pi \sigma_{\varepsilon}^{2}\right)^{n / 2}} \exp \left[-\frac{(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})}{2 \sigma_{\varepsilon}^{2}}\right]
$$

- Note: $\exp (a)$ in a formula means e^{a}, for the constant $e \simeq 2.718$.
- In maximum-likelihood estimation, recall, we find the values of the parameters that make the probability of observing the data as high as possible.
- The likelihood function is the same as the probability (or probabilitydensity) of the data, except thought of as a function of the parameters.
- Here,

$$
L\left(\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)=\left(2 \pi \sigma_{\varepsilon}^{2}\right)^{-n / 2} \exp \left[-\frac{(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})}{2 \sigma_{\varepsilon}^{2}}\right]
$$

As is usually the case, it is simpler to work with the log of the likelihood.

- Whatever values of the parameters maximize the log-likelihood also maximize the likelihood, since the log function is monotone (strictly increasing).
- For the linear model:

$$
\log _{e} L\left(\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)=-\frac{n}{2} \log _{e} 2 \pi-\frac{n}{2} \log _{e} \sigma_{\varepsilon}^{2}-\frac{1}{2 \sigma_{\varepsilon}^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
$$

- To justify this result, recall that taking logs turns multiplication into addition, division into subtraction, and exponentiation into multiplication; moreover, $\log _{e} e^{a}=a$.
- To maximize the log-likelihood, we need its derivatives with respect to the parameters.
- Finding the derivatives is simplified by noticing that $(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$ is just the sum of squared errors.
- Differentiating,

$$
\begin{aligned}
& \frac{\partial \log _{e} L\left(\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)}{\partial \boldsymbol{\beta}}=-\frac{1}{2 \sigma_{\varepsilon}^{2}}\left(2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}-2 \mathbf{X}^{\prime} \mathbf{y}\right) \\
& \frac{\partial \log _{e} L\left(\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)}{\partial \sigma_{\varepsilon}^{2}}=-\frac{n}{2}\left(\frac{1}{\sigma_{\varepsilon}^{2}}\right)+\frac{1}{\sigma_{\varepsilon}^{4}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

- Setting the partial derivatives to 0 and solving for maximum-likelihood estimates of the parameters produces

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
\widehat{\sigma}_{\varepsilon}^{2} & =\frac{(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})}{n}=\frac{\mathbf{e}^{\prime} \mathbf{e}}{n}
\end{aligned}
$$

where $\mathbf{e}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$ is the vector of residuals.

Notice that

- The MLE $\widehat{\boldsymbol{\beta}}$ is just the least-squares coefficients b.
- The MLE of the error variance, $\widehat{\sigma}_{\varepsilon}^{2}=\sum e_{i}^{2} / n$ is biased.
- The usual unbiased estimator, s_{e}^{2}, divides by residual degrees of freedom $n-k-1$ rather than by n.
- The MLE is consistent, however, since the bias (along with the variance of the estimator) goes to zero as n get larger.

6. Statistical Inference for Least-Squares Estimation

- Statistical inference for $\boldsymbol{\beta}$ based on the least-squares coefficients buses the estimated covariance matrix $\widehat{V}(\mathbf{b})=s_{e}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
- The simplest case is inference for an individual coefficient, b_{j} :
- The standard error of the coefficient is the square root of the j th diagonal entry of the estimated covariance matrix (indexing the matrix from 0):

$$
\mathbf{S E}\left(b_{j}\right)=\sqrt{s_{e}^{2}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{j j}}
$$

- Because the error variance has been estimated, hypothesis tests and confidence intervals use the t-distribution with $n-k-1$ degress of freedom.
- For example:
- To test

$$
H_{0}: \beta_{j}=0
$$

we compute

$$
t_{0}=\frac{b_{j}}{\operatorname{SE}\left(b_{j}\right)}
$$

- To form a 95-percent confidence interval for β_{j} we take

$$
\beta_{j}=b_{j} \pm t_{.975, n-k-1} \operatorname{SE}\left(b_{j}\right)
$$

where $t_{.975, n-k-1}$ is the .975 quantile of the t-distribution with $n-k-1$ degrees of freedom.

- More generally, suppose that we want to test the linear hypothesis

$$
H_{0}: \underset{(q \times k+1)(k+1 \times 1)}{\boldsymbol{L}}=\underset{(q \times 1)}{\mathbf{c}}
$$

where the hypothesis matrix L and the right-hand-side vector c (usually 0) encode the hypothesis.

- For example, in Duncan's regression of prestige on income and education, the hypothesis matrix

$$
\mathbf{L}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and right-hand-side vector

$$
\mathbf{c}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

specify the hypothesis

$$
H_{0}: \beta_{1}=0, \beta_{2}=0
$$

- Likewise, again for Duncan's regression, the one-row hypothesis matrix

$$
\mathbf{L}=\left[\begin{array}{lll}
0 & 1 & -1
\end{array}\right]
$$

and right-hand-side $\mathbf{c}=[0]$ correspond to the hypothesis

$$
H_{0}: \beta_{1}-\beta_{2}=0
$$

that is

$$
H_{0}: \beta_{1}=\beta_{2}
$$

- Under the hypothesis H_{0}, the statistic

$$
F_{0}=\frac{(\mathbf{L b}-\mathbf{c})^{\prime}\left[\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1}(\mathbf{L b}-\mathbf{c})}{q s_{e}^{2}}
$$

follows an F-distribution with q and $n-k-1$ degrees of freedom.

- Example: For Duncan's regression, the sum of squared residuals is $\mathbf{e}^{\prime} \mathbf{e}=7506.699$, and so

$$
s_{e}^{2}=\frac{7506.699}{45-2-1}=178.7309
$$

- The estimated covariance matrix of the least-squares coefficients is $\widehat{V}(\mathbf{b})=s_{e}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$

$$
\begin{aligned}
& =178.7309\left[\begin{array}{rrr}
0.1021058996 & -0.0008495732 & -0.0008432006 \\
-0.0008495732 & 0.0000801220 & -0.0000476613 \\
-0.0008432006 & -0.0000476613 & 0.0000540118
\end{array}\right] \\
& =\left[\begin{array}{rrr}
18.249387 & -0.151844 & -0.150705 \\
-0.151844 & 0.014320 & -0.008519 \\
-0.150705 & -0.008519 & 0.009653
\end{array}\right]
\end{aligned}
$$

- The estimated standard errors of the regression coefficients are, therefore,

$$
\begin{aligned}
& \operatorname{SE}\left(b_{0}\right)=\sqrt{18.249387}=4.272 \\
& \operatorname{SE}\left(b_{1}\right)=\sqrt{0.014320}=0.1197 \\
& \operatorname{SE}\left(b_{2}\right)=\sqrt{0.009653}=0.09825
\end{aligned}
$$

- and, a 95-percent confidence interval for β_{1} (the income coefficient) is

$$
\beta_{1}=0.5987 \pm 2.0181 \times 0.1197
$$

$$
=0.5987 \pm 0.2416
$$

- To test the hypothesis that both slope coefficients are 0 ,

$$
H_{0}: \beta_{1}=\beta_{2}=0
$$

we have
$\mathbf{L}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathbf{L b}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{r}-6.06466 \\ 0.59873 \\ 0.54583\end{array}\right]=\left[\begin{array}{l}0.59873 \\ 0.54583\end{array}\right]$ (i.e., the two slopes)

$$
\begin{aligned}
F_{0}= & \frac{(\mathbf{L b})^{\prime}\left[\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1} \mathbf{L b}}{q s_{e}^{2}} \\
& {[0.599,0.546]\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
0.1021 & -0.0008 & -0.0008 \\
-0.0008 & 0.0001 & -0.0000 \\
-0.0008 & -0.0000 & 0.0001
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)^{-1} } \\
= & \times\left[\begin{array}{r}
0.599 \\
0.546
\end{array}\right] \\
= & 101.22 \text { with } 2 \text { and } 42 \text { degrees of freedom, } p \simeq 0
\end{aligned}
$$

- To test the hypothesis that the slopes are equal:
$\mathbf{L}=\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]$
$\mathbf{L b}=\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]\left[\begin{array}{r}-6.06466 \\ 0.59873 \\ 0.54583\end{array}\right]=0.05290$ (i.e., the difference in slopes)
$F_{0}=\frac{(\mathbf{L b})^{\prime}\left[\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1} \mathbf{L b}}{q s_{e}^{2}}$
$=\frac{0.053\left(\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]\left[\begin{array}{rrr}0.1021 & -0.0008 & -0.0008 \\ -0.0008 & 0.0001 & -0.0000 \\ -0.0008 & -0.0000 & 0.0001\end{array}\right]\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]\right)^{-1} 0.053}{1 \times 178.7309}$
$=0.068$ with 1 and 42 degrees of freedom, $p=.80$

