Sociology 761 John Fox

Lecture Notes

Linear Models Using Matrices

Copyright © 2014 by John Fox

Linear Models Using Matrices

1. Introduction

➤ The principal purpose of this lecture is to demonstrate how matrices can be used to simplify the development of statistical models.

- ► A secondary purpose is to review, and extend, some material in linear models.
- ▶ I will take up the following topics:
 - Expressing linear models for regression, dummy regression, and analysis of variance in matrix form.
 - Deriving the least-squares coefficients using matrices.
 - Distribution of the least-squares coefficients.
 - The least-squares coefficients as maximum-likelihood estimators.
 - Statistical inference for linear models.

Sociology 761

Copyright © 2014 by John Fox

2. Linear Models in Matrix Form

► The general linear model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i$$

where

- y_i is the value of the *response variable* for the *i*th of *n* observations.
- $x_{i1}, x_{i2}, ..., x_{ik}$ are the values of k regressors for observation i. In linear regression analysis, $x_{i1}, x_{i2}, ..., x_{ik}$ are the values of k quantitative explanatory variables.
- $\beta_0, \beta_1, \dots, \beta_k$ are k+1 parameters to be estimated from the data, including the *constant* or *intercept* term, β_0 .
- ε_i is the random *error* variable for the *i*th observation.

Sociology 761

Copyright © 2014 by John Fox

Linear Models Using Matrices

- ► The statistical assumptions of the linear model concern the behaviour of the errors; the standard assumptions include:
 - Linearity: The average error is zero, $E(\varepsilon_i)=0$; equivalently, $E(y_i)=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\cdots+\beta_kx_{ik}$.
 - Constant error variance: The variance of the errors is the same for all observations, $V(\varepsilon_i) = \sigma_\varepsilon^2$; equivalently, $V(y_i) = \sigma_\varepsilon^2$.
 - Normality: The errors are normally distributed, and so $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$; equivalently, $y_i \sim N(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik}, \sigma_{\varepsilon}^2)$.
 - *Independence*: The errors are independently sampled that is ε_i and ε_i are independent for $i \neq j$; equivalently, y_i and y_i are independent.
 - Either the x-values are *fixed* (with respect to repeated sampling) or, if random, the xs are *independent of the errors*.

▶ The linear model may be rewritten as

$$y_{i} = \begin{bmatrix} 1, x_{i1}, x_{i2}, ..., x_{ik} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{k} \end{bmatrix} + \varepsilon_{i}$$

$$= \mathbf{x}'_{i} \mathbf{\beta} + \varepsilon_{i}$$

$$= (1 \times k+1)(k+1 \times 1) + \varepsilon_{i}$$

• There is one such equation for each observation, i = 1, ..., n.

Sociology 761 Copyright ©2014 by John Fox

Linear Models Using Matrices

5

ullet Collecting these n equations into a single matrix equation:

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ \cdot \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2k} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ 1 & x_{n1} & \cdots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \cdot \\ \cdot \\ \varepsilon_n \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X} \underbrace{\boldsymbol{\beta}}_{(n \times k+1)(k+1 \times 1)} + \underbrace{\boldsymbol{\epsilon}}_{(n \times 1)}$$

- The X matrix in the linear model is called the *model matrix* (or the design matrix).
- Note the column of 1s for the constant.

Sociology 761

▶ Similarly, the assumptions of linearity, constant variance, normality, and independence can be recast as

$$\varepsilon \sim N_n(\mathbf{0}, \sigma_\varepsilon^2 \mathbf{I}_n)$$

where $N_n(\mathbf{0},\sigma_{arepsilon}^2\mathbf{I}_n)$ denotes the multivariate-normal distribution with

- mean vector 0.
- and covariance matrix

$$\sigma_{\varepsilon}^{2}\mathbf{I}_{n} = \begin{bmatrix} \sigma_{\varepsilon}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{\varepsilon}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{\varepsilon}^{2} \end{bmatrix}$$

equivalently,

$$\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma_{\varepsilon}^2 \mathbf{I}_n)$$

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

2.1 Dummy Regression Models

- ▶ The matrix equation $y = X\beta + \varepsilon$ suffices not just for linear regression models, but — with suitable specification of the regressors — for linear models generally.
- ▶ For example, consider the dummy-regression model

$$y_i = \alpha + \beta x_i + \gamma d_i + \delta(x_i d_i) + \varepsilon_i$$

where

- y is income in dollars,
- x is years of education,
- and the dummy regressor *d* is coded 1 for men and 0 for women.

Sociology 761

- ▶ Recall that this model implies potentially different intercepts and slopes — that is, potentially different regression lines — for the two groups:
 - for men,

$$y_i = \alpha + \beta x_i + \gamma 1 + \delta(x_i 1) + \varepsilon_i$$

= $(\alpha + \gamma) + (\beta + \delta)x_i + \varepsilon_i$

for women

$$y_i = \alpha + \beta x_i + \gamma 0 + \delta(x_i 0) + \varepsilon_i$$

= $\alpha + \beta x_i + \varepsilon_i$

- \bullet and so γ is the difference in intercepts between men and women, and δ is the difference in slopes.
- Because men and women can have different slopes, this model permits gender to *interact* with education in determining income.

Sociology 761

Copyright © 2014 by John Fox

Linear Models Using Matrices

9

▶ Written as a matrix equation, the dummy-regression model becomes.

$$\begin{bmatrix} y_1 \\ \vdots \\ y_{n_1} \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n_1} & 0 & 0 \\ \hline 1 & x_{n_1+1} & 1 & x_{n_1+1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & 1 & x_n \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_{n_1} \\ \varepsilon_{n_1+1} \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

where, for clarity, the n_1 observations for women precede the $n-n_1$ observations for men.

▶ Reminder: When a categorical explanatory variable has more than two (say, m) categories, it generates a set of m-1 dummy regressors — that is, one fewer dummy variable than the number of categories.

 For example, a five-category regional classification might produce the following four dummy regressors:

Region	d_1	d_2	d_3	d_4
East	1	0	0	0
Quebec	0	1	0	0
Ontario	0	0	1	0
Prairies	0	0	0	1
BC	0	0	0	0

• Here, BC is arbitrarily selected as the *baseline category*, to which other categories will implicitly be compared.

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

11

2.2 Analysis of Variance Models

- ► Analysis of variance or ANOVA models are linear models in which all of the explanatory variables are factors that is, categorical variables.
- ▶ The simplest case is *one-way ANOVA*, where there is a single factor.
 - The one-way ANOVA model is usually written with double-subscript notation as

$$y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$$

for *levels* j=1,...,m of the factor, and observations $i=1,...,n_j$ of level j.

The matrix form of the one-way ANOVA model is

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

13

12

- ▶ This formulation of the model is problematic because there is a redundant column in the model matrix (which is therefore of *deficient rank m*):
 - For example, the first column is the sum of the remaining columns.
 - This will create a problem when we try to fit the model by least squares, but more fundamentally, it reflects a redundancy among the parameters of the model.
- ► A common solution to the problem is to reduce the parameters by one. There are many ways to do this, all providing equivalent fits to the data. For example:
 - ullet Eliminating the constant, μ , produces a so-called means model,

$$y_{ij} = \alpha_j + \varepsilon_{ij}$$

where α_i now represents the population mean of level j.

• Eliminating one of the α_j produces a dummy-variable solution, with the omitted coefficient corresponding to the baseline category (here category m):

Sociology 761

Copyright ©2014 by John Fox

$$\begin{bmatrix} y_{11} \\ \vdots \\ y_{n_{1},1} \\ y_{12} \\ \vdots \\ y_{n_{2},2} \\ \vdots \\ y_{1,m-1} \\ \vdots \\ y_{n_{m-1},m-1} \\ \vdots \\ y_{n_{m},m} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \varepsilon_{1,m-1} \\ \vdots \\ \varepsilon_{n_{m-1},m-1} \\ \vdots \\ \varepsilon_{n_{m-1},m-1} \\ \vdots \\ \varepsilon_{n_{m},m} \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Sociology 761

Copyright © 2014 by John Fox

Linear Models Using Matrices

15

- ► Alternatively, we can place a linear constraint on the parameters, most commonly, the *sigma constraint*
 - Under this constraint

$$j=1
 \alpha_m = -\sum_{m=1}^{m-1} \alpha_m$$

need not appear explicitly, producing the model matrix

$$\begin{array}{c} \operatorname{group} 1 \\ \\ \mathbf{X}_{(n \times m)} = \\ \\ \operatorname{group} m \end{array} = \begin{bmatrix} (\mu) & (\alpha_1) & (\alpha_2) & \cdots & (\alpha_{m-1}) \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{1} & 0 & \cdots & 0 \\ 0 & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{1} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{1} & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{1} & -1 & -1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -1 & -1 & \cdots & -1 \\ \end{bmatrix}$$

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

3. Least-Squares Fit

► The fitted linear model is

$$y = Xb + e$$

where

- $\mathbf{b} = [b_0, b_1, ..., b_k]'$ is the vector of fitted coefficients.
- $\mathbf{e} = [e_1, e_2, ..., e_n]' = \mathbf{y} \mathbf{X}\mathbf{b}$ is the vector of residuals.
- ► We want the coefficient vector b that minimizes the residual sum of squares, expressed as a function of b:

$$S(\mathbf{b}) = \sum_{i} e_i^2 = \mathbf{e}' \mathbf{e} = (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$
$$= \mathbf{y}' \mathbf{y} - \mathbf{y}' \mathbf{X}\mathbf{b} - \mathbf{b}' \mathbf{X}' \mathbf{y} + \mathbf{b}' \mathbf{X}' \mathbf{X}\mathbf{b}$$
$$= \mathbf{y}' \mathbf{y} - (2\mathbf{y}' \mathbf{X})\mathbf{b} + \mathbf{b}' (\mathbf{X}' \mathbf{X})\mathbf{b}$$

• The last line of the equation is justified because $\mathbf{y}' \mathbf{X} \mathbf{b}$ and $\mathbf{b}' \mathbf{X}' \mathbf{x}$ are both scalars, and consequently equal

 \mathbf{b}' \mathbf{X}' \mathbf{y} are both scalars, and consequently equal.

Sociology 761

Copyright © 2014 by John Fox

▶ Noting that y'y is a constant (with respect to b), (2y'X)b is a linear function of b, and b'(X'X)b is a quadratic form in b,

$$\frac{\partial S(\mathbf{b})}{\partial \mathbf{b}} = \mathbf{0} - 2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{b}$$

 Setting the derivative to 0 produces the normal equations for the linear model

$$-2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{0}$$
$$\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{X}'\mathbf{y}$$

a system of k+1 linear equations in k+1 unknowns (i.e., $b_0, b_1, ..., b_k$).

- We can solve the normal equations uniquely for ${\bf b}$ if as the $(k+1) \times (k+1)$ matrix ${\bf X}'{\bf X}$ is nonsingular, which will be the case as long as
 - there are at least as many observations as coefficients that is, $n \ge k + 1$.
 - no column of the model matrix X is a perfect linear function of the other columns.

Sociology 761

Copyright © 2014 by John Fox

19

Linear Models Using Matrices

ullet When $\mathbf{X}'\mathbf{X}$ is nonsingular, the least-squares solution is

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

- Looking inside of the matrices in the normal equations,
 - the matrix X'X contains sums of squares and cross-products for the regressors (including the column of 1s).
 - $\ X'y$ contains sums of products between the regressors and the response.
- The normal equations, therefore, are

$$b_{0}n + b_{1} \sum_{i=1}^{\infty} x_{i1} + \dots + b_{k} \sum_{i=1}^{\infty} x_{ik} = \sum_{i=1}^{\infty} y_{i}$$

$$b_{0} \sum_{i=1}^{\infty} x_{i1} + b_{1} \sum_{i=1}^{\infty} x_{i1}^{2} + \dots + b_{k} \sum_{i=1}^{\infty} x_{i1} x_{ik} = \sum_{i=1}^{\infty} x_{i1} y_{i}$$

$$\vdots \qquad \qquad \vdots$$

$$b_{0} \sum_{i=1}^{\infty} x_{ik} + b_{1} \sum_{i=1}^{\infty} x_{ik} x_{i1} + \dots + b_{k} \sum_{i=1}^{\infty} x_{ik}^{2} = \sum_{i=1}^{\infty} x_{ik} y_{i}$$

► An example, using Duncan's regression of occupational prestige on the income and education levels of 45 U.S. occupations:

Matrices of sums of squares and products:

$$\mathbf{X'X} = \begin{bmatrix} 45 & 1884 & 2365 \\ 1884 & 105, 148 & 122, 197 \\ 2365 & 122, 197 & 163, 265 \end{bmatrix}$$

$$\mathbf{X'y} = \begin{bmatrix} 2146 \\ 118, 229 \\ 147, 936 \end{bmatrix}$$

• The inverse of X'X:

$$(\mathbf{X'X})^{-1} = \begin{bmatrix} 0.1021058996 & -0.0008495732 & -0.0008432006 \\ -0.0008495732 & 0.0000801220 & -0.0000476613 \\ -0.0008432006 & -0.0000476613 & 0.0000540118 \end{bmatrix}$$

• The regression coefficients:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \begin{bmatrix} -6.06466 \\ 0.59873 \\ 0.54583 \end{bmatrix}$$

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

21 4. Distribution of the Least-Squares

Coefficients

▶ It is simple to show that least-squares coefficients are unbiased estimators of the population regression coefficients:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

and so (assuming a fixed model matrix X),

$$E(\mathbf{b}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta}) = \boldsymbol{\beta}$$

▶ The covariance matrix of b follows from the covariance matrix of y, which is $\sigma_{\varepsilon}^2 \mathbf{I}_n$:

$$V(\mathbf{b}) = \left[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \right] V(\mathbf{y}) \left[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \right]'$$

$$= \left[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \right] \sigma_{\varepsilon}^{2} \mathbf{I}_{n} \left[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \right]'$$

$$= \sigma_{\varepsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma_{\varepsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}$$

Sociology 761

Copyright @2014 by John Fox

ullet Because the error variance σ_{ε}^2 is an unknown parameter, the covariance matrix of b must be estimated:

$$\widehat{V}(\mathbf{b}) = s_e^2 (\mathbf{X}' \mathbf{X})^{-1}$$

where

$$s_e^2 = \frac{\sum e_i^2}{n - k - 1}$$

 $s_e^2 = \frac{\sum e_i^2}{n-k-1}$ is the estimated error variance, and e_i is the residual for observation i.

▶ Because the response vector y is multinormally distributed, so is b; that

$$\mathbf{b} \sim N_{k+1} \left[\boldsymbol{\beta}, \, \sigma_{\varepsilon}^2 (\mathbf{X}'\mathbf{X})^{-1} \right]$$

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

23

▶ Notice the strong analogy between the formulas for the slope coefficient in least-squares simple regression (i.e., with a single x) and for the coefficients of the linear model in matrix form:

	Simple Regression	Linear Model
Model	$y_i = \alpha + \beta x_i + \varepsilon_i$	$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + oldsymbol{arepsilon}$
Least-Squares Estimator	$y^* = x^*\beta + \varepsilon$ $b = \frac{\sum x^*y^*}{\sum x^{*2}}$	$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
Sampling Variance	$V(b) = \frac{\left(\sum_{\varepsilon} x^{*2}\right)^{-1} \sum_{\varepsilon} x^{*}y^{*}}{\sum_{\varepsilon} x^{*2}}$	$V(\mathbf{b}) = \sigma_{arepsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$
Sampling variance	$\begin{vmatrix} v(0) - \overline{\sum x^{*2}} \\ = \sigma_{\varepsilon}^{2} (\sum x^{*2})^{-1} \end{vmatrix}$	$V(\mathbf{b}) = \theta_{\varepsilon}(\mathbf{A} \mathbf{A})$
Distribution	$b \sim$	$\mathrm{b} \sim$
	$N\left[\beta, \sigma_{\varepsilon}^{2} \left(\sum x^{*2}\right)^{-1}\right]$	$oxed{N_{k+1} \left[oldsymbol{eta}, \sigma^2_arepsilon(\mathbf{X}'\mathbf{X})^{-1} ight]}$

• In the scalar formulas the following short-hand notation is used:

$$x^* = x_i - \overline{x}$$
$$y^* = y_i - \overline{y}$$

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

5. Maximum-Likelihood Estimation of the Normal Linear Model

▶ The standard assumptions of the linear model provide a probability model for the data y (thinking of the model matrix X as fixed or conditioning on it):

$$\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \, \sigma_{\varepsilon}^2 \mathbf{I}_n)$$

• Then, from the formula for the normal distribution,

$$p(\mathbf{y}) = \frac{1}{(2\pi\sigma_{\varepsilon}^2)^{n/2}} \exp\left[-\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma_{\varepsilon}^2}\right]$$

- *Note*: $\exp(a)$ in a formula means e^a , for the constant $e \simeq 2.718$.
- ▶ In *maximum-likelihood estimation*, recall, we find the values of the parameters that make the probability of observing the data as high as possible.

Sociology 761

• The likelihood function is the same as the probability (or probabilitydensity) of the data, except thought of as a function of the parameters.

Here,

$$L(\boldsymbol{\beta}, \sigma_{\varepsilon}^2) = (2\pi\sigma_{\varepsilon}^2)^{-n/2} \exp\left[-\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma_{\varepsilon}^2}\right]$$

- ▶ As is usually the case, it is simpler to work with the log of the likelihood.
 - Whatever values of the parameters maximize the log-likelihood also maximize the likelihood, since the log function is monotone (strictly increasing).
 - For the linear model:

$$\log_e L(\boldsymbol{\beta}, \sigma_{\varepsilon}^2) = -\frac{n}{2} \log_e 2\pi - \frac{n}{2} \log_e \sigma_{\varepsilon}^2 - \frac{1}{2\sigma_{\varepsilon}^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

• To justify this result, recall that taking logs turns multiplication into addition, division into subtraction, and exponentiation into multiplication; moreover, $\log_e e^a = a$.

Sociology 761

Copyright © 2014 by John Fox

Linear Models Using Matrices

27

- ➤ To maximize the log-likelihood, we need its derivatives with respect to the parameters.
 - Finding the derivatives is simplified by noticing that $(\mathbf{y} \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} \mathbf{X}\boldsymbol{\beta})$ is just the sum of squared errors.
 - Differentiating,

$$\frac{\partial \log_e L(\boldsymbol{\beta}, \sigma_{\varepsilon}^2)}{\partial \boldsymbol{\beta}} = -\frac{1}{2\sigma_{\varepsilon}^2} (2\mathbf{X}'\mathbf{X}\boldsymbol{\beta} - 2\mathbf{X}'\mathbf{y})
\frac{\partial \log_e L(\boldsymbol{\beta}, \sigma_{\varepsilon}^2)}{\partial \sigma_{\varepsilon}^2} = -\frac{n}{2} \left(\frac{1}{\sigma_{\varepsilon}^2}\right) + \frac{1}{\sigma_{\varepsilon}^4} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

• Setting the partial derivatives to 0 and solving for maximum-likelihood estimates of the parameters produces

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\widehat{\sigma}_{\varepsilon}^{2} = \frac{(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})}{n} = \frac{\mathbf{e}'\mathbf{e}}{n}$$

where $e = y - X \hat{\beta}$ is the vector of residuals.

- Notice that
 - The MLE $\hat{\beta}$ is just the least-squares coefficients b.
 - The MLE of the error variance, $\hat{\sigma}_{\varepsilon}^2 = \sum e_i^2/n$ is *biased*.
 - The usual unbiased estimator, s_e^2 , divides by residual degrees of *freedom* n-k-1 rather than by n.
 - The MLE is *consistent*, however, since the bias (along with the variance of the estimator) goes to zero as n get larger.

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

29 6. Statistical Inference for Least-Squares

Estimation

- \blacktriangleright Statistical inference for β based on the least-squares coefficients b uses the estimated covariance matrix $\widehat{V}(\mathbf{b}) = s_e^2(\mathbf{X}'\mathbf{X})^{-1}$.
- ▶ The simplest case is inference for an individual coefficient, b_i :
 - The standard error of the coefficient is the square root of the jth diagonal entry of the estimated covariance matrix (indexing the matrix from 0):

$$\mathsf{SE}(b_j) = \sqrt{s_e^2[(\mathbf{X}'\mathbf{X})^{-1}]_{jj}}$$

 Because the error variance has been estimated, hypothesis tests and confidence intervals use the t-distribution with n-k-1 degrees of freedom.

Sociology 761

Copyright © 2014 by John Fox

- For example:
 - To test

$$H_0: \beta_i = 0$$

we compute

$$t_0 = \frac{b_j}{\mathsf{SE}(b_j)}$$

– To form a 95-percent confidence interval for $\boldsymbol{\beta}_j$ we take

$$\beta_j = b_j \pm t_{.975, n-k-1} \mathsf{SE}(b_j)$$

where $t_{.975,n-k-1}$ is the .975 quantile of the t-distribution with n-k-1 degrees of freedom.

▶ More generally, suppose that we want to test the linear hypothesis

$$H_0$$
: $\underset{(q \times k+1)(k+1 \times 1)}{\mathbf{L}} = \underset{(q \times 1)}{\mathbf{c}}$

where the hypothesis matrix ${\bf L}$ and the right-hand-side vector ${\bf c}$ (usually 0) encode the hypothesis.

Sociology 761

Copyright © 2014 by John Fox

31

30

Linear Models Using Matrices

 For example, in Duncan's regression of prestige on income and education, the hypothesis matrix

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and right-hand-side vector

$$\mathbf{c} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

specify the hypothesis

$$H_0$$
: $\beta_1 = 0$, $\beta_2 = 0$

• Likewise, again for Duncan's regression, the one-row hypothesis matrix

$$\mathbf{L} = \left[\begin{array}{cc} 0 & 1 & -1 \end{array}\right]$$
 and right-hand-side $\mathbf{c} = [0]$ correspond to the hypothesis H_0 : $\beta_1 - \beta_2 = 0$

that is

$$H_0: \beta_1 = \beta_2$$

ullet Under the hypothesis H_0 , the statistic

$$F_0 = \frac{(\mathbf{L}\mathbf{b} - \mathbf{c})' \left[\mathbf{L}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{L}'\right]^{-1}(\mathbf{L}\mathbf{b} - \mathbf{c})}{qs_e^2}$$
 follows an F -distribution with q and $n-k-1$ degrees of freedom.

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

33

► Example: For Duncan's regression, the sum of squared residuals is e'e = 7506.699, and so

$$s_e^2 = \frac{7506.699}{45 - 2 - 1} = 178.7309$$

• The estimated covariance matrix of the least-squares coefficients is $\widehat{V}(\mathbf{b}) = s_e^2(\mathbf{X}'\mathbf{X})^{-1}$

$$\begin{array}{l} (\mathbf{D}) = s_e(\mathbf{X}|\mathbf{X}) \\ = 178.7309 \begin{bmatrix} 0.1021058996 & -0.0008495732 & -0.0008432006 \\ -0.0008495732 & 0.0000801220 & -0.0000476613 \\ -0.0008432006 & -0.0000476613 & 0.0000540118 \end{bmatrix} \\ = \begin{bmatrix} 18.249387 & -0.151844 & -0.150705 \\ -0.151844 & 0.014320 & -0.008519 \\ -0.150705 & -0.008519 & 0.009653 \end{bmatrix}$$

• The estimated standard errors of the regression coefficients are, therefore,

$$SE(b_0) = \sqrt{18.249387} = 4.272$$

 $SE(b_1) = \sqrt{0.014320} = 0.1197$
 $SE(b_2) = \sqrt{0.009653} = 0.09825$

 \bullet and, a 95-percent confidence interval for β_1 (the income coefficient) is

$$eta_1 = 0.5987 \pm 2.0181 \times 0.1197$$

= 0.5987 \pm 0.2416

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

35

• To test the hypothesis that both slope coefficients are 0,

$$H_0$$
: $\beta_1 = \beta_2 = 0$

we have
$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{Lb} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -6.06466 \\ 0.59873 \\ 0.54583 \end{bmatrix} = \begin{bmatrix} 0.59873 \\ 0.54583 \end{bmatrix}$$
 (i.e., the two slopes)

$$F_0 = \frac{\left(\mathbf{L}\mathbf{b}\right)' \left[\mathbf{L}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{L}'\right]^{-1}\mathbf{L}\mathbf{b}}{qs_e^2} \\ \left[0.599, 0.546\right] \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.1021 & -0.0008 & -0.0008 \\ -0.0008 & 0.0001 & -0.0000 \\ -0.0008 & -0.0000 & 0.0001 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \right)^{-1} \\ \times \begin{bmatrix} 0.599 \\ 0.546 \end{bmatrix} \\ = 101.22 \text{ with 2 and 42 degrees of freedom, } p \simeq 0$$

Sociology 761 Copyright © 2014 by John Fox

Linear Models Using Matrices

• To test the hypothesis that the slopes are equal:

• To test the hypothesis that the slopes are equal:
$$\mathbf{L} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$$

$$\mathbf{Lb} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} -6.06466 \\ 0.59873 \\ 0.54583 \end{bmatrix} = 0.05290 \text{ (i.e., the difference in slopes)}$$

$$F_0 = \frac{(\mathbf{Lb})' \left[\mathbf{L} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{L}' \right]^{-1} \mathbf{Lb}}{qs_e^2}$$

$$= \frac{0.053 \left(\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0.1021 & -0.0008 & -0.0008 \\ -0.0008 & 0.0001 & -0.0000 \\ -0.0008 & -0.0000 & 0.0001 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right)^{-1} 0.053}{1 \times 178.7309}$$

$$= 0.068 \text{ with 1 and 42 degrees of freedom, } p = .80$$

Sociology 761

Copyright © 2014 by John Fox