Homework Problems on Calculus

Soc. 761
Fall 2014

Problems marked with an asterisk are optional. Problems 1-3 are adapted from Kleppner and Ramsey, Quick Calculus (Wiley, 1972).

1. * Find the following limits, if they exist:
(a)

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x-2}
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{x^{2}+x+1}{x}
$$

(c)

$$
\lim _{x \rightarrow \infty} \frac{1}{x}
$$

2. Find the derivative of each of the following functions of x (where a and b are constants):
(a)

$$
y=x+x^{2}+x^{3}
$$

(b)

$$
y=(a+b x)+(a+b x)^{2}+(a+b x)^{3}
$$

(c)

$$
y=\left(3 x^{2}+7 x\right)^{-3}
$$

(d)

$$
y=\sqrt{a^{2}+x^{2}}
$$

Hint: Recall that $\sqrt{z}=z^{\frac{1}{2}}$.
(e)

$$
y=\log _{e}\left(x^{2}+x\right)
$$

Here $e \approx 2.718$ is a constant (the base of the natural logs).

$$
\begin{equation*}
y=e^{x^{2}+x} \tag{f}
\end{equation*}
$$

3. * Use the definition of the derivative as the limit of the difference quotient to differentiate the following function with respect to x :

$$
y=f(x)=4 x^{2}+4 x+2
$$

4. Find the first and second derivatives of each of the following polynomial functions of x. For each funciton, determine the points at which the first derivative is 0 , and use the second derivative to decide whether each such stationary point is a local minimum, a local maximum, or neither. Determine the value of the function (i.e., the value of y) at each point where the first derivative is 0 .
(a)

$$
y=\frac{x^{3}}{3}-16 x+7
$$

(b)

$$
y=4 x^{2}+4 x+2
$$

(c)

$$
y=8-6 x
$$

5. * The problem of finding least-squares regression coefficients for a simple regression can be phrased in the following manner: The equation relating the response variable y to the explanatory variable x for the i th of n observations is

$$
y_{i}=a+b x_{i}+e_{i}
$$

where a and b are the regression coefficients (to be determined), and e_{i} is the residual for the i th observation. Solving this equation for the residual,

$$
e_{i}=y_{i}-a-b x_{i}
$$

The squared residual for the i th observation is therefore

$$
e_{i}^{2}=\left(y_{i}-a-b x_{i}\right)^{2}
$$

The sum of squared residuals over all n observations can be thought of as a function of the regression coefficients a and b, since the observed values of the variables x_{i} and y_{i} are known constants for a particular sample of observations:

$$
S(a, b)=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}
$$

The problem is to determine the values of a and b that minimize the sum-of-squares function $S(a, b)$. This problem can be handled by finding the partial derivatives of $S(a, b)$ with respect to a and b; setting the partial derivatives to 0 ; and solving the resulting system of two equations for a and b. Derive these equations for a and b without actually solving them. Hint: Use the chain rule.
6. Find the vector partial derivatives of the following functions of \mathbf{x} :
(a)

$$
y=[3,2,1,6]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

(b)

$$
y=\underset{(1 \times n)}{\mathbf{x}^{\prime}} \mathbf{I}_{n} \underset{(n \times 1)}{\mathbf{x}}
$$

(c)

$$
y=\left[x_{1}, x_{2}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Hint: Be careful with this one.
7. For each of the following functions: Find an antiderivative (indefinite integral) of the function; use the antiderivative to compute the area between $x=0$ and $x=2$; and * draw a graph of the function showing this area.
(a)

$$
y=f(x)=4 x^{3}+3 x^{2}+2 x+1
$$

(b)

$$
y=f(x)=e^{x}
$$

(c) *

$$
y=f(x)=\frac{1}{x+1}
$$

