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Abstract

1 Introduction
The normal linear model (described, for example, in Chapter 4 of the text),

yi = Bixy + Bazoi + -+ BpTpi + &
g; ~ NID(0,0?)

has one random effect (in the terminology of mixed-effects models, the subject of this appendix),
the error term ¢;. The parameters of the model are the regression coefficients, g1, 2, ..., Bp, and the
error variance, o> (a variance component). Usually, x1; = 1, and so f; is a constant or intercept.

For comparison with the linear mixed model of the next section, we rewrite the linear model in
matrix form,

y = XB+e
e ~ N,L(0,0°1,)

where y = (y1,¥2,...,yn)’ is the response vector; X is the model matrix, with typical row x| =
(213, 24, ..y Tpi); B = (B1, B2, ..., Bp) is the vector of regression coefficients; e = (e1, €2, ...,&5)" is the
vector of errors; IN,, represents the n-variable multivariate-normal distribution; 0 is an n x 1 vector
of 0s; and I, is the order-n identity matrix.

So-called mized-effect models (or just mized models) include additional random-effect terms
(and associated variance and covariance components), and are often appropriate for representing
clustered, and therefore dependent, data — arising, for example, when data are collected hierar-
chically, when observations are taken on related individuals (such as siblings), or when data are
gathered over time on the same individuals.

There are several facilities in R for fitting mixed models to data, the most commonly used of
which are the nlme (Pinheiro and Bates, 2000; Pinheiro et al., 2014) and lme4 (Bates et al., 2014)
packages, and which we discuss in this appendix.! The nlme package is a part of the standard R
distribution, and the lme4 package is available on CRAN.

'nlme stands for nonlinear mixed effects, even though the package also includes the 1me function for fitting linear
mixed models. Similarly, Ime4 stands for linear mixed effects with S4 classes, but also includes functions for fitting
generalized linear and nonlinear mixed models.



Section 2 describes how to fit linear mixed models in R. Sections 3 and 4 deal respectively
with generalized linear mixed models and nonlinear mixed models. Mixed models are a large and
complex subject, and we will only scratch the surface here. Bayesian approaches, which we do not
cover, are also common and are available in R: See the complementary readings in Section 5.

2 Linear Mixed Models

Linear mized models (LMMs) may be expressed in different but equivalent forms. In the social
and behavioral sciences, it is common to express such models in hierarchical form, as illustrated
in Section 2.1. The 1me (linear mixed effects) function in the nlme package and the lmer (linear
mixed-effects regression, pronounced “elmer”) function in the lme4 package, however, employ the
Laird-Ware form of the LMM (after a seminal paper on the topic published by Laird and Ware,
1982):

vij = Bz + -+ Bppij (1)
+bi12155 + -+ - + big2gij + €ij

bir, ~ N(0,97), Cov(by, byr) = Vg

Eij ~ N(O, 02)\1']‘]'), COV(&ij,EEU/) = 0'2)\1']'3'/

where

e y;; is the value of the response variable for the jth of n; observations in the ith of M groups
or clusters.

e (1,..., 05, are the fixed-effect coefficients, which are identical for all groups.

® T1;j,...,Tpi; are the fixed-effect regressors for observation j in group 4; the first regressor is
usually for the regression constant, x1;; = 1.

e bi1,..., by are the random-effect coefficients for group 4, assumed to be multivariately nor-
mally distributed. The random effects, therefore, vary by group. The b;;. are thought of as
random variables, not as parameters, and are similar in this respect to the errors €;;.

® 21ij,-..,%q; are the random-effect regressors.

° wz are the variances and i the covariances among the random effects, assumed to be
constant across groups. In some applications, the s are parametrized in terms of a relatively
small number of fundamental parameters.

e ¢;; is the error for observation j in group ¢. The errors for group ¢ are assumed to be multi-
variately normally distributed.

) 02)\2-]-3-/ is the covariance between errors e;; and g;7 in group 4. Generally, the \;;;; are
parametrized in terms of a few basic parameters, and their specific form depends upon context.
For example, when observations are sampled independently within groups and are assumed
to have constant error variance (as in the application developed in Section 2.1), A;;; = o2,
Nijj7 = 0 (for j # j'), and thus the only free parameter to estimate is the common error
variance, 2. The lmer function in the lme4 package handles only models of this form. In
contrast, if the observations in a “group” represent longitudinal data on a single individual,
then the structure of the As may be specified to capture autocorrelation among the errors, as



is common in observations collected over time. The 1lme function in the nlme package can
handle autocorrelated and heteoscedastic errors.

Alternatively but equivalently, in matrix form,

yi = XiB+Zb;+eg;
b; ~ N,(0,%)
g an (070-2Ai)

where

e y; is the n; x 1 response vector for observations in the ith group.

e X, is the n; x p model matrix for the fixed effects for observations in group 3.

e (3 is the p x 1 vector of fixed-effect coefficients.

e 7, is the n; x ¢ model matrix for the random effects for observations in group <.
e b; is the ¢ x 1 vector of random-effect coefficients for group i.

e g, is the n; x 1 vector of errors for observations in group 3.

e W is the ¢ X ¢ covariance matrix for the random effects.

e 02A; is the n; x n; covariance matrix for the errors in group i; for the 1Imer function the error
covariance matrix for group i is o2I,,.

2.1 An Illustrative Application to Hierarchical Data

Applications of mixed models to hierarchical data have become common in the social sciences,
and nowhere more so than in research on education. The following example is borrowed from
Raudenbush and Bryk’s influential text on hierarchical linear models (Raudenbush and Bryk, 2002),
and also appears in a paper by Singer (1998), which shows how such models can be fit by the MIXED
procedure in SAS. In this section, we will show how to model Raudenbush and Bryk’s data using
the 1me function in the nlme package and the lmer function in the lme4 package.

The data for the example, from the 1982 “High School and Beyond” survey, are for 7185 high-
school students from 160 schools. There are, therefore, on average 7185/160 ~ 45 students per
school. The data are conveniently available in the data frames MathAchieve and MathAchSchool
in the nlme package:?

> library(nlme)
> head(MathAchieve, 10) # first 10 students

Grouped Data: MathAch ~ SES | School
School Minority Sex SES MathAch MEANSES

1 1224 No Female -1.528 5.876 -0.428
2 1224 No Female -0.588 19.708 -0.428
3 1224 No Male -0.528 20.349 -0.428

2These are actually grouped-data objects, which inherit from data-frame objects, and which include some additional
information along with the data. We briefly discuss grouped-data objects later in this appendix.
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1224 No Male -0.668 8.781 -0.428

1224 No Male -0.158 17.898 -0.428
1224 No Male 0.022 4.583 -0.428
1224 No Female -0.618 -2.832 -0.428
1224 No Male -0.998 0.523 -0.428
1224 No Female -0.888 1.527 -0.428
1224 No Male -0.458 21.521 -0.428

> dim(MathAchieve)

[1] 7185 6

> head (MathAchSchool, 10) # first 10 schools

1224
1288
1296
1308
1317
1358
1374
1433
1436
1461

School Size Sector PRACAD DISCLIM HIMINTY MEANSES
1224 842 Public 0.35 1.597 0 -0.428

1288 1855  Public 0.27 0.174 0O 0.128
1296 1719  Public 0.32 -0.137 1 -0.420
1308 716 Catholic 0.96 -0.622 0O 0.534
1317 455 Catholic 0.95 -1.694 1 0.351
1368 1430 Public 0.25 1.535 0 -0.014
1374 2400 Public 0.50 2.016 0 -0.007
1433 899 Catholic 0.96 -0.321 0O 0.718
1436 185 Catholic 1.00 -1.141 0 0.569
1461 1672 Public 0.78 2.096 0O 0.683

> dim(MathAchSchool)

[1] 160 7

The first data frame pertains to students, and there is therefore one row in the data frame for each
of the 7185 students; the second data frame pertains to schools, and there is one row for each of
the 160 schools. We will use the following variables:

School: an identification number for the student’s school. Although it is not required by 1me
or lmer, students in a specific school are in consecutive rows of the data frame, a convenient
form of data organization. The schools define groups — it is unreasonable to suppose that
students in the same school are independent of one-another.

SES: the socioeconomic status of the student’s family, centered to an overall mean of 0 (within
rounding error).

MathAch: the student’s score on a math-achievement test.

Sector: a factor coded "Catholic" or "Public". This is a school-level variable and hence
is identical for all students in the same school. A variable of this kind is sometimes called an
outer variable or a contextual variable, to distinguish it from an inner variable or individual-
level variable (such as SES), which varies within groups. Because the Sector variable resides



in the school data set, we need to copy it over to the appropriate rows of the student data
set. Such data-management tasks are common in preparing data for mixed-modeling.?

e MEANSES: another outer variable, giving the mean SES for students in each school; we call
outer variables that aggregate individual-level data to the group level compositional variables.
Notice that this variable already appears in both data sets. The variable, however, seems to
have been calculated incorrectly — that is, its values are slightly different from the school
means computed directly from the MathAchieve data set — and we will therefore recompute
it (using tapply — see Section 8.4 of the text) and replace it in the student data set:*

> mses <- with(MathAchieve, tapply(SES, School, mean))
> mses[as.character (MathAchSchool$School[1:10])] # for first 10 schools

1224 1288 1296 1308 1317 1358 1374 1433
-0.43438 0.12160 -0.42550 0.52800 0.34533 -0.01967 -0.01264 0.71200
1436 1461

0.56291 0.67745

We begin by creating a new data frame, called Bryk, containing the inner variables that we
require:

> Bryk <- as.data.frame(MathAchieve[, c("School", "SES", "MathAch")])

> names (Bryk) <- tolower (names (Bryk))

> set.seed(12345) # for reproducibility

> (sample20 <- sort(sample(nrow(Bryk), 20))) # 20 randomly sampled students

[1] 9 248 1094 1195 1283 2334 2783 2806 2886 3278 3317 3656 5180 5223 5278
[16] 5467 6292 6365 6820 7103

> Bryk[sample20, ]

school ses mathach
9 1224 -0.888 1.527
248 1433 1.332 18.496
1094 2467 0.062 6.415
1195 2629 0.942 11.437
1283 2639 -1.088 -0.763
2334 3657 -0.288 13.156
2783 4042 0.792 14.500
2806 4042 0.482 3.687
2886 4223 1.242 20.375
3278 4511 -0.178 15.550
3317 4511 0.342 7.447

3This data-management task is implied by the Laird-Ware form of the LMM. Some software that is specifically
oriented towards modeling hierarchical data employs two data files — one for contextual variables and one for
individual-level variables — corresponding respectively to the MathAchieveSchool and MathAchieve data sets in the
present example.

4We are not sure why the school means given in the MathAchieveSchool and MathAchieve data sets differ from
the values that we compute directly. It is possible that the values in these data sets were computed from larger
populations of students in the sampled schools.



3656 5404 0.902 18.802
5180 7232 0.442 23.591
5223 7276 -1.098 -1.525
5278 7332 -0.508 16.114
5467 7364 -0.178 20.325
6292 8707 -0.228 18.463
6365 8800 -0.658 11.928
6820 9198 -0.538 2.349
7103 9550 0.752 4.285

Using as.data.frame, we make Bryk an ordinary data frame rather than a grouped-data object.
We rename the variables to lower-case in conformity with our usual practice — data frames start
with upper-case letters, variables with lower-case letters.

Next, we add the outer variables to the data frame, in the process computing a version of SES,
called cses, that is centered at the school means:

> sector <- MathAchSchool$Sector

> names (sector) <- row.names (MathAchSchool)

> Bryk <- within(Bryk,{

+ meanses <- as.vector(mses[as.character(school)])
+ cses <- ses - meanses

+ sector <- sector[as.character (school)]

+

>

»)
Bryk[sample20, ]
school ses mathach sector cses meanses
9 1224 -0.888 1.527 Public -0.45362 -0.43438

248 1433 1.332 18.496 Catholic 0.62000 0.71200
1094 2467 0.062 6.415 Public 0.39173 -0.32973
1195 2629 0.942 11.437 Catholic 1.07965 -0.13765
1283 2639 -1.088 -0.763 Public -0.12357 -0.96443
2334 3657 -0.288 13.156 Public 0.36118 -0.64918
2783 4042 0.792 14.500 Catholic 0.39000 0.40200
2806 4042 0.482 3.687 Catholic 0.08000 0.40200
2886 4223 1.242 20.375 Catholic 1.33600 -0.09400
3278 4511 -0.178 15.550 Catholic -0.07086 -0.10714
3317 4511 0.342  7.447 Catholic 0.44914 -0.10714
3656 5404 0.902 18.802 Catholic 0.07702 0.82498
5180 7232 0.442 23.591 Public 0.53212 -0.09012
5223 7276 -1.098 -1.525  Public -1.17623 0.07823
5278 7332 -0.508 16.114 Catholic -0.80500 0.29700
5467 7364 -0.178 20.325 Catholic -0.08864 -0.08936
6292 8707 -0.228 18.463 Public -0.38313 0.15513
6365 8800 -0.658 11.928 Catholic 0.05125 -0.70925
6820 9198 -0.538  2.349 Catholic -1.03000 0.49200
7103 9550 0.752 4.285 Public 0.69897 0.05303

These steps are a bit tricky:



e The students’ school numbers (in school) are converted to character values, used to index
the outer variables in the school dataset. This procedure assigns the appropriate values of
meanses and sector to each student.

e To make this indexing work for the Sector variable in the school data set, the variable is
assigned to the global vector sector, whose names are then set to the row names of the school
data frame.

Following Raudenbush and Bryk, we will ask whether students’ math achievement is related to
their socioeconomic status; whether this relationship varies systematically by sector; and whether
the relationship varies randomly across schools within the same sector.

2.1.1 Examining the Data

As in all data analysis, it is advisable to examine the data before embarking upon statistical
modeling. There are too many schools to look at each individually, so we start by selecting samples
of 20 public and 20 Catholic schools, storing each sample in a data frame:

> cat <- with(Bryk, sample(unique(school[sector == "Catholic"]), 20))
> Cat.20 <- Brykl[is.element (Bryk$school, cat), ]
> dim(Cat.20)

[1] 1027 6
> pub <- with(Bryk, sample(unique(school[sector == "Public"]), 20))
> Pub.20 <- Brykl[is.element (Bryk$school, pub), ]
> dim(Pub.20)
[1] 739 6
We use Trellis graphics (provided by the lattice package — see Section 7.3.1 of the text)

to visualize the relationship between math achievement and school-centered SES in the sampled
schools:

> library(lattice) # for Trellis graphics

> trellis.device(color=FALSE)

> xyplot (mathach ~ cses | school, data=Cat.20, main="Catholic",
+ panel=function(x, y){

+ panel.xyplot(x, y)

+ panel.loess(x, y, span=1)

+ panel.lmline(x, y, 1lty=2)

+ }

+)

> xyplot (mathach ~ cses | school, data=Pub.20, main="Public",
+ panel=function(x, y){

+ panel.xyplot (x, y)

+ panel.loess(x, y, span=1)

+ panel.lmline(x, y, lty=2)

+ }

+ )



e The call to trellis.device creates a graphics-device window appropriately set up for Trel-
lis graphics; in this case, we specified monochrome graphics (color = FALSE) so that this
appendix will print well in black-and-white; the default is to use color.

e The xyplot function draws a Trellis display of scatterplots of math achievement against
socioeconomic status, one scatterplot for each school, as specified by the formula
mathach ~ ses | school. The school number appears in the strip label above each plot.
We created one graph for Catholic schools (Figure 1) and another for public schools (Figure
2). The argument main to xyplot supplies the title of each graph.

e The content of each cell (or panel) of the Trellis display is determined by the panel argu-
ment to xyplot, here an anonymous function defined “on the fly.” This function takes two
arguments, x and y, giving respectively the horizontal and vertical coordinates of the points
in a panel, and successively calls three standard panel functions:

— panel.xyplot (which is the default panel function for xyplot) creates a basic scatter-
plot.

— panel.loess draws a local regression line on the plot. Because there is a modest number
of observations for each school, we set the span of the local-regression smoother to 1.
(See the Appendix on nonparametric regression for details.)

— panel.lmline similarly draws a least-squares line; the argument 1ty=2 produces a bro-
ken line.

Examining the scatterplots in Figures 1 and 2, there is a weak positive relationship between
math achievement and SES in most Catholic schools, although there is variation among schools:
In some schools the slope of the regression line is near 0 or even negative. There is also a positive
relationship between the two variables for most of the public schools, and here the average slope
is larger. Considering the moderate number of students in each school, linear regressions appear
to do a reasonable job of capturing the within-school relationships between math achievement and
SES.

The nlme package includes the function 1lmList for fitting a linear model to the observations
in each group, returning a list of linear-model objects, which is itself an object of class "ImList".?
Here, we fit the regression of math-achievement scores on centered socioeconomic status for each
school, creating separate "lmList" objects for Catholic and public schools:

> cat.list <- ImList(mathach ~ cses | school, subset = sector=="Catholic",

+ data=Bryk)
> pub.list <- 1mList(mathach ~ cses | school, subset = sector=="Public",
+ data=Bryk)

Several methods exist for manipulating "1mList" objects. For example, the generic intervals
function has a method for objects of this class that returns (by default) 95-percent confidence
intervals for the regression coefficients; the confidence intervals can be plotted, as follows:

> plot(intervals(cat.list), main="Catholic")

> plot(intervals(pub.list), main="Public")
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Figure 1: Trellis display of math achievement by socio-economic status for 20 randomly selected
Catholic schools. The broken lines give linear least-squares fits, the solid lines local-regression fits.
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Figure 3: 95-percent confidence intervals for the intercepts and slopes of the within-schools regres-
sions of math achievement on centered SES, for Catholic schools.
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Figure 4: 95-percent confidence intervals for the intercepts and slopes of the within-schools regres-
sions of math achievement on centered SES, for public schools.
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The resulting graphs are shown in Figures 3 and 4. In interpreting these graphs, we need to be
careful to take into account that we have not constrained the scales for the plots to be the same, and
indeed the scales for the intercepts and slopes in the public schools are wider than in the Catholic
schools. Because the SES variable is centered to 0 within schools, the intercepts are interpretable as
the average level of math achievement in each school. It is clear that there is substantial variation
in the intercepts among both Catholic and public schools; the confidence intervals for the slopes,
in contrast, overlap to a much greater extent, but there is still apparent school-to-school variation.

To facilitate comparisons between the distributions of intercepts and slopes across the two
sectors, we draw parallel boxplots of the coefficients:

> cat.coef <- coef(cat.list)
> head(cat.coef, 10)

(Intercept) cses
7172 8.067 0.9945
4868 12.310 1.2865
2305 11.138 -0.7821
8800 7.336 2.5681
5192 10.409 1.6035
4523 8.352 2.3808
6816 14.538 1.3527
2277 9.298 -2.0150
8009 14.085 1.5569
4530 9.056 1.6474

> pub.coef <- coef(pub.list)
> head(pub.coef, 10)

(Intercept) cses
8367 4.553 0.2504
8854 4.240 1.9388
4458 5.811 1.1318
5762 4.325 -1.0141
6990 5.977 0.9477
5815 7.271 3.0180
7341 9.794 1.7037
1358 11.206 5.0680
4383 11.466 6.1802
3088 9.146 1.7913
> old <- par(mfrow=c(1, 2))
> boxplot(cat.coef[, 1], pub.coef[, 1], main="Intercepts",
+ names=c("Catholic", "Public"))
> boxplot(cat.coef[, 2], pub.coef[, 2], main="Slopes",
+ names=c("Catholic", "Public"))
> par(old) # restore

A similar function is included in the lme4 package.

13
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Figure 5: Boxplots of intercepts and slopes for the regressions of math achievement on centered
SES in Catholic and public schools..

The calls to coef extract matrices of regression coefficients from the 1mList objects, with rows
representing schools. Setting the plotting parameter mfrow to 1 row and 2 columns produces the
side-by-side pairs of boxplots in Figure 5; mfrow is then returned to its previous value. The Catholic
schools have a higher average level of math achievement than the public schools, while the average
slope relating math achievement to SES is larger in the public schools than in the Catholic schools.

2.1.2 Fitting a Hierarchical Linear Model with 1me

Following Raudenbush and Bryk (2002) and Singer (1998), we will fit a hierarchical linear model to
the math-achievement data. This model consists of two equations: First, within schools, we have
the regression of math achievement on the individual-level covariate SES; it aids interpretability of
the regression coefficients to center SES at the school average; then the intercept for each school
estimates the average level of math achievement in the school.

Using centered SES, the individual-level equation for individual j in school i is

mathach;; = ap; + aiicsesi; + €i; 2)

At the school level, also following Raudenbush, Bryk, and Singer, we will entertain the possibility
that the school intercepts and slopes depend upon sector and upon the average level of SES in the
schools:

Qp; = 7Yoo + Yoimeanses; + ygesector; + ug; (3)

a1; = 710 + yi1meanses; + yiesector; + ui;

This kind of formulation is sometimes called a coefficients-as-outcomes model.®

5This coefficients-as-outcomes model assumes that the regressions of the within-school intercepts and slopes on
school mean SES are linear. We invite the reader to examine this assumption by creating scatterplots of the within-
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Substituting the school-level Equation 3 into the individual-level Equation 2 produces

mathach;; = 790 + Y01 meanses; + yp2sector; + up;

+(710 + yp1meanses; + yjasector; + ulj)csesij + €35
Rearranging terms,

mathach;; = 700 + yo1meanses; + ypzsector; + yipcses;;
+7y11meanses;cses;; + yj28ector;cses;;

+ug; + uicses;; + €5

Here, the ~ys are fixed effects, while the us (and the individual-level errors €;;) are random effects.
Finally, rewriting the model in the notation of the LMM (Equation 1),

mathach;; = (1 + Someanses; + fB3sector; + B4cses;; (4)
+fPsmeanses;cses;; + [gsector;cses;;
+bi1 + biocses;j + €45

The change is purely notational, using fs for fixed effects and bs for random effects. (In the data
set, however, the school-level variables — that is, meanses and sector — are attached to the
observations for the individual students, as previously described.) We place no constraints on the
covariance matrix of the random effects, so

_ bin | [ v} @012]
‘I’_V[bﬂ]_[?bm V3

but assume that the individual-level errors are independent within schools, with constant variance:
V(€z> =0 QIni

As mentioned in Section 2, LMMs are fit with the 1me function in the nlme package. Specifying
the fixed effects in the call to 1me is identical to specifying a linear model in a call to 1m (see Chapter
4 of the text). Random effects are specified via the random argument to 1me, which takes a one-sided
model formula.

Before fitting a mixed model to the math-achievement data, we reorder the levels of the factor
sector so that the contrast for sector will use the value 0 for the public sector and 1 for the
Catholic sector, in conformity with the coding employed by Raudenbush and Bryk (2002) and by
Singer (1998):

> Bryk$sector <- factor(Bryk$sector, levels=c("Public", "Catholic"))
> contrasts (Bryk$sector)

Catholic
Public 0
Catholic 1

Having established the contrast-coding for sector, the LMM in Equation 4 is fit as follows:

school regression coefficients for Catholic and public schools, computed in the previous section, against school mean
SES, modifying the hierarchical model in light of these graphs if the relationships appear nonlinear. For an analysis
along these lines, see the discussion of the High School and Beyond data in Fox (ress).
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> bryk.lme.1 <- lme(mathach ~ meanses*cses + sector*cses,
+ random = ~ cses | school,

+ data=Bryk)

> summary (bryk.lme.1)

Linear mixed-effects model fit by REML
Data: Bryk
AIC BIC loglik
46524 46592 -23252

Random effects:
Formula: ~“cses | school
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.5426 (Intr)
cses 0.3182 0.391
Residual 6.0598

Fixed effects: mathach ~ meanses * cses + sector * cses
Value Std.Error DF t-value p-value

(Intercept) 12.128 0.1993 7022 60.86 0.0000
meanses 5.333 0.3692 157 14.45 0.0000
cses 2.945 0.1556 7022 18.93 0.0000
sectorCatholic 1.227 0.3063 157 4.00 0.0001
meanses:cses 1.039 0.2989 7022 3.48 0.0005
cses:sectorCatholic -1.643 0.2398 7022 -6.85 0.0000
Correlation:
(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.075 0.019

sectorCatholic -0.699 -0.356 -0.053
meanses:cses 0.019 0.074 0.293 -0.026

cses:sectorCatholic -0.052 -0.027 -0.696 0.077 -0.351

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.156926 -0.72319 0.01705 0.75445 2.95822

Number of Observations: 7185
Number of Groups: 160

Notice that the formula for the random effects includes only the term for centered SES; as in a linear-
model formula, a random intercept is implied unless it is explicitly excluded (by specifying -1 in the
random formula). By default, 1me fits the model by restricted mazimum likelihood (REML), which
in effect corrects the maximum-likelihood estimator for degrees of freedom (see the complementary
readings).

The output from the summary method for 1me objects consists of several panels:

e The first panel gives the AIC (Akaike information criterion) and BIC (Bayesian information
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criterion), which can be used for model selection (see Section 4.5 of the text), along with the
log of the maximized restricted likelihood.

e The next panel displays estimates of the variance and covariance parameters for the random
effects, in the form of standard deviations and correlations. The term labelled Residual is
the estimate of o. Thus, ¥ = 1.543, ¥ = 0.318, & = 6.060, and 12 = 0.391 x 1.543 x0.318 =
0.192.

e The table of fixed effects is similar to output from 1m; to interpret the coefficients in this
table, refer to the hierarchical form of the model given in Equations 2 and 3, and to the
Laird-Ware form of the LMM in Equation 4 (which orders the coefficients differently from
the 1me output). In particular:

— The fixed-effect intercept coefficient 31 = 12.128 represents an estimate of the average
level of math achievement in public schools, which are the baseline category for the
dummy regressor for sector.

— Likewise, the coefficient labelled sectorCatholic, 34 = 1.227, represents the difference
between the average level of math achievement in Catholic schools and public schools.

— The coeflicient for cses, 53 = 2.945, is the estimated average slope for SES in public
schools, while the coefficient labelled cses:sectorCatholic, Bﬁ = —1.643, gives the
difference in average slopes between Catholic and public schools. As we noted in our
exploration of the data, the average level of math achievement is higher in Catholic than
in public schools, and the average slope relating math achievement to students’ SES is
larger in public than in Catholic schools.

— Given the parametrization of the model, the coefficient for meanses, 32 = 5.333, repre-
sents the relationship of schools’ average level of math achievement to their average level
of SES

— The coefficient for the interaction meanses:cses, 35 = 1.039, gives the average change
in the within-school SES slope associated with a one-unit increment in the school’s mean
SES. All of the coefficients are highly statistically significant.”

e The panel labelled Correlation gives the estimated sampling correlations among the fixed-
effect coefficient estimates. These coefficient correlations are not usually of direct interest.
Very large correlations, however, are indicative of an ill-conditioned model.

e Some information about the standardized within-group residuals (£;;/0), the number of ob-
servations, and the number of groups, appears at the end of the output.

In addition to estimating and testing the fixed effects, it is of interest to determine whether there
is evidence that the variances of the random effects in the model are different from 0. We can test
hypotheses about the variances and covariances of random effects by deleting random-effects terms
from the model and noting the change in the log of the maximized restricted likelihood, calculating
log likelihood-ratio statistics. When LMMSs are fit by REML, we must be careful, however, to
compare models that are identical in their fixed effects.

For the current illustration, we may proceed as follows:

"See Section 2.2 for more careful hypothesis tests of fixed-effects coefficients in LMMs.
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> bryk.lme.2 <- update(bryk.lme.1,
+ random = ~ 1 | school) # omitting random effect of cses
> anova(bryk.lme.1, bryk.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
bryk.lme.1 1 10 46524 46592 -23252
bryk.lme.2 2 8 46521 46576 -232562 1 vs 2 1.124 0.57

> bryk.lme.3 <- update(bryk.lme.1,

+ random = ~ cses - 1 | school) # omitting random intercept
> anova(bryk.lme.1, bryk.lme.3)

Model df AIC BIC logLik Test L.Ratio p-value
bryk.lme.1 1 10 46524 46592 -23252
bryk.lme.3 2 8 46740 46795 -23362 1 vs 2 220.6 <.0001

FEach of these likelihood-ratio tests is on 2 degrees of freedom, because excluding one of the random
effects removes not only its variance from the model but also its covariance with the other random
effect. There is strong evidence, then, that the average level of math achievement (as represented
by the intercept) varies from school to school, but not that the coefficient of SES varies, once
differences between Catholic and public schools are taken into account, and the average level of
SES in the schools is held constant.

A more careful formulation of these tests takes account of the fact that each null hypothesis
places a variance (but not covariance) component on a boundary of the parameter space. Con-
sequently, the null distribution of the LR test statistic is not simply chisquare with 2 degrees of
freedom, but rather a mixture of chisquare distributions.® Moreover, it is reasonably simple to
compute the corrected p-value:

> pval <- function(chisq, df){

+ (pchisq(chisq, df, lower.tail=FALSE) +

+ pchisq(chisq, df - 1, lower.tail=FALSE))/2
+ }

> pval(1.124, df=2)

[1] 0.4296
> pval(220.6, df=2)
[1] 6.59e-49

Here, therefore, the corrected p-values are similar to the uncorrected ones.

Model bryk.lme.2, fit above, omits the non-significant random effects for cses; the fixed-
effects estimates are nearly identical to those for the initial model bryk.1lme.1, which includes
these random effects:

> summary (bryk.lme.2)

8See the complementary readings for discussion of this point.
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Linear mixed-effects model fit by REML
Data: Bryk
AIC BIC logLik
46521 46576 -23252

Random effects:

Formula: ~1 | school
(Intercept) Residual

StdDev: 1.541 6.064

Fixed effects: mathach ~ meanses * cses + sector * cses
Value Std.Error DF t-value p-value

(Intercept) 12.128 0.1992 7022 60.88 0.0000
meanses 5.337 0.3690 157 14.46 0.0000
cses 2.942 0.1512 7022 19.46 0.0000
sectorCatholic 1.225 0.3061 157 4.00 0.0001
meanses:cses 1.044 0.2910 7022 3.59 0.0003
cses:sectorCatholic -1.642 0.2331 7022 -7.05 0.0000
Correlation:
(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.000 0.000

sectorCatholic -0.699 -0.356 0.000
meanses:cses 0.000 0.000 0.295 0.000

cses:sectorCatholic 0.000 0.000 -0.696 0.000 -0.351

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.17012 -0.72488 0.01485 0.75424 2.96551

Number of Observations: 7185
Number of Groups: 160

This model is sufficiently simple, despite the interactions, to interpret the fixed effects from
the estimated coefficients, but even here it is likely easier to visualize the model in effect plots (as
discussed for linear models in Section 4.3.3 of the text). Our effects package has methods for mixed
models fit by functions in the nlme and Ime4 packages. In the present example, we can use the
allEffects function to graph the high-order fixed effects in the LMM we fit to the High School
and Beyond Data — that is, the interactions between mean and centered SES and between mean
SES and sector — producing Figure 6:

NULL

> library(effects)
> plot(allEffects(bryk.lme.2), rug=FALSE)

It is clear from these graphs that the impact of a student’s SES on math achievement rises as the
mean level of math achievement in his or her school rises, and is larger in public schools than in
Catholic schools.
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Figure 6: Effect displays for the high-order terms in the LMM fit to the High School and Beyond
data, bryk.lme.2.

2.1.3 Fitting a Hierarchical Linear Model with lmer

We can perform the same analysis employing lmer in the lmed package. For example, to fit the
initial hiearchical model considered in the previous section:

> library(1me4)

> bryk.lmer.1 <- lmer(mathach ~ meanses*cses + sector*cses + (cses | school),
+ data=Bryk)

> summary (bryk.lmer.1)

Linear mixed model fit by REML ['lmerMod']
Formula: mathach ~ meanses * cses + sector * cses + (cses | school)
Data: Bryk

REML criterion at convergence: 46504
Scaled residuals:
Min 1Q Median 3Q Max

-3.159 -0.723 0.017 0.754 2.958

Random effects:

Groups  Name Variance Std.Dev. Corr
school  (Intercept) 2.380 1.543

cses 0.101 0.318 0.39
Residual 36.721 6.060
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Number of obs: 7185, groups: school, 160

Fixed effects:
Estimate Std. Error t value

(Intercept) 12.128 0.199 60.9
meanses 5.333 0.369 14.4
cses 2.945 0.156 18.9
sectorCatholic 1.227 0.306 4.0
meanses:cses 1.039 0.299 3.5
cses:sectorCatholic -1.643 0.240 -6.9

Correlation of Fixed Effects:

(Intr) meanss cses sctrCt mnss:c
meanses 0.256
cses 0.075 0.019
sectorCthlc -0.699 -0.356 -0.053
meanses:css 0.019 0.074 0.293 -0.026
css:sctrCth -0.052 -0.027 -0.696 0.077 -0.351

The estimates of the fixed effects and variance/covariance components are the same as those ob-
tained from 1lme (see page 15), but the specification of the model is slightly different: Rather than
using a random argument as in lme, the random effects in lmer are given directly in the model
formula, enclosed in parentheses; as in lme, a random intercept is implied if it is not explicitly
removed. An important difference between 1me and lmer, however, is that 1mer can accommodate
crossed random effects, while 1me cannot: Suppose, for example, that we were interested in teacher
effects on students’ achievement. Each student in a high school has several teachers, and so students
would not be strictly nested within teachers.

A subtle difference between the 1lme and lmer output is that the former includes p-values for
the Wald t-tests of the estimated coefficients while the latter does not. The p-values in lmer are
suppressed because the Wald tests can be inaccurate. We address this issue in Section 2.2.

As in the previous section, let us proceed to remove the random slopes from the model, com-
paring the resulting model to the initial model by a likelihood-ratio text:

> bryk.lmer.2 <- lmer (mathach ~ meanses*cses + sector*cses + (1 | school),
+ data=Bryk)
> anova(bryk.lmer.1, bryk.lmer.2)

Data: Bryk

Models:

bryk.lmer.2: mathach ~ meanses * cses + sector * cses + (1 | school)

bryk.lmer.1: mathach ~ meanses * cses + sector * cses + (cses | school)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

bryk.lmer.2 8 46513 46568 -23249 46497

bryk.lmer.1 10 46516 46585 -23248 46496 1 2 0.61

Notice that, out of an abundance of caution, anova refits the models using ML rather than REML,
because LR ratio tests of models that differ in their fized effects are inappropriate. In our case,
however, the models compared have identical fixed effects and differ only in the random effects. A
likelihood-ratio test is therefore appropriate even if the models are fit by REML. We can obtain
this test by specifying the argument refit=FALSE:
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> anova(bryk.lmer.1, bryk.lmer.2, refit=FALSE)

Data: Bryk

Models:

bryk.lmer.2: mathach ~ meanses * cses + sector * cses + (1 | school)

bryk.lmer.1l: mathach ~ meanses * cses + sector * cses + (cses | school)
Df AIC BIC loglLik deviance Chisq Chi Df Pr(>Chisq)

bryk.lmer.2 8 46521 46576 -23252 46505

bryk.lmer.1 10 46524 46592 -23252 46504 1.12 2 0.57

The results are identical to those using 1lme.

2.2 Wald Tests for Linear Mixed Models

As we mentioned, it is inappropriate to perform likelihood-ratio tests for fixed effects when a LMM
is fit by REML. Though it is sometimes recommended that ML be used instead to obtain LR tests
of fixed effects, ML estimates can be substantially biased when there are relatively few higher-level
units. Wald tests can be performed, however, for the fixed effects in a LMM estimated by REML,
but as we also mentioned, Wald tests obtained for individual coefficients by dividing estimated fixed
effects by their standard errors can be inaccurate. The same is true of more complex Wald tests
on several degrees of freedom — for example, F-tests for terms in a linear mixed model.

One approach to obtaining more accurate inferences in LMMs fit by REML is to adjust the
estimated covariance matrix of the fixed effects to reduce the typically downward bias of the coeffi-
cient standard errors, as suggested by Kenward and Roger (1997), and to adjust degrees of freedom
for t and F tests (applying a method introduced by Satterthwaite, 1946). These adjustments are
available for linear mixed models fit by 1mer in the Anova and linearhypothesis functions in the
car package, employing infrastructure from the pbkrtest package. For example,

> library(car)
> Anova(bryk.lmer.2, test="F")

Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: mathach
F Df Df.res Pr(>F)

meanses 209.2 1 156 < 2e-16
cses 409.4 1 7023 < 2e-16
sector 16.0 1 154 9.8e-05
meanses:cses 12.9 1 7023 0.00033
cses:sector 49.6 1 7023 2.0e-12

In this case, with many schools and a moderate number of students within each school, the KR
tests are essentially the same as Wald chisquare tests using the naively computed covariance matrix
for the fixed effects:

> Anova(bryk.lmer.2)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: mathach
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Chisq Df Pr(>Chisq)

meanses 209.2 1 < 2e-16
cses 409.4 1 < 2e-16
sector 16.0 1 6.3e-05
meanses:cses 12.9 1 0.00033
cses:sector 49.6 1 1.9e-12

2.3 An Illustrative Application to Longitudinal Data

To illustrate the use of linear mixed models in longitudinal research, we draw on data described by
Davis et al. (2005) on the exercise histories of 138 teenaged girls hospitalized for eating disorders
and of 93 comparable “control” subjects.” The data are in the data frame Blackmore in the car
package:

> head (Blackmore, 20)

subject age exercise  group

1 100 8.00 2.71 patient
2 100 10.00 1.94 patient
3 100 12.00 2.36 patient
4 100 14.00 1.54 patient
5 100 15.92 8.63 patient
6 101 8.00 0.14 patient
7 101 10.00 0.14 patient
8 101 12.00 0.00 patient
9 101 14.00 0.00 patient
10 101 16.67 5.08 patient
11 102 8.00 0.92 patient
12 102 10.00 1.82 patient
13 102 12.00 4.75 patient
15 102 15.08 24.72 patient
16 103 8.00 1.04 patient
17 103 10.00 2.90 patient
18 103 12.00 2.65 patient
20 103 14.08 6.86 patient
21 104 8.00 2.75 patient
22 104 10.00 6.62 patient

The variables are:

e subject: an identification code; there are several observations for each subject, but because
the girls were hospitalized at different ages, the number of observations and the age at the
last observation vary.

e age: the subject’s age in years at the time of observation; all but the last observation for each
subject were collected retrospectively at intervals of 2 years, starting at age 8.

e exercise: the amount of exercise in which the subject engaged, expressed as estimated hours
per week.

9These data were generously made available to me by Elizabeth Blackmore and Caroline Davis of York University.
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e group: a factor indicating whether the subject is a "patient" or a "control".'?

2.3.1 Examining the Data

Initial examination of the data suggested that it is advantageous to take the log of exercise: Doing
so makes the exercise distribution for both groups of subjects more symmetric and linearizes the
relationship of exercise to age.!! Because there are some 0 values of exercise, we use “started”
logs in the analysis reported below (see Section 3.4 of the text on transforming data), adding 5
minutes (5/60 of an hour) to each value of exercise prior to taking logs (and using logs to the
base 2 for interpretability):

> Blackmore$log.exercise <- log(Blackmore$exercise + 5/60, 2)

As in the analysis of the math-achievement data in the preceding section, we begin by sampling
20 subjects from each of the patient and control groups, plotting log.exercise against age for
each subject:

pat <- with(Blackmore, sample(unique(subject[group=="patient"]), 20))
Pat.20 <- groupedData(log.exercise ~ age | subject,
data=Blackmore[is.element (Blackmore$subject, pat),])
con <- with(Blackmore, sample(unique(subject[group=="control"]), 20))
Con.20 <- groupedData(log.exercise ~ age | subject,
data=Blackmore[is.element (Blackmore$subject, con),])
print (plot(Con.20, main="Control Subjects",
xlab="Age", ylab="log2 Exercise",
ylim=1.2*range (Con.20%log.exercise, Pat.20$log.exercise),
layout=c(5, 4), aspect=1.0),
position=c(0, 0, 0.5, 1), more=TRUE)
print(plot(Pat.20, main="Patients",
xlab="Age", ylab="log2 Exercise",
ylim=1.2*range(Con.20$log.exercise, Pat.20$log.exercise),
layout=c(5, 4), aspect=1.0),
position=c(0.5, 0, 1, 1))

+ + + +V++++V+VYV+VY

The graphs appear in Figure 7.

e Each Trellis plot is constructed by using the default plot method for grouped-data objects.
Grouped-data objects, provided by the nlme package, are enhanced data frames, incorporat-
ing a model formula that gives information about the structure of the data. In this instance,
the formula log.exercise ~ age | subject, read as “log.exercise depends on age given
subject,” indicates that log.exercise is the response variable, age is the principal within-
subject covariate (actually, in this application, it is the only within-subject covariate), and
the data are grouped by subject.

e To make the two plots comparable, we have exercised direct control over the scale of the
vertical axis (set to slightly larger than the range of the combined log-exercise values), the
layout of the plot (5 columns, 4 rows),'? and the aspect ratio of the plot (the ratio of the

10T avoid the possibility of confusion, we point out that the variable group represents groups of independent
patients and control subjects, and is not a factor defining clusters. Clusters in this longitudinal data set are defined
by the variable subject.

1We invite the read to examine the distribution of the exercise variable, before and after log-transformation.

12Notice the unusual ordering in specifying the layout — columns first, then rows.
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vertical to the horizontal size of the plotting region in each panel, set here to 1.0).

e The print method for Trellis objects, normally automatically invoked when the returned
object is not assigned to a variable, simply plots the object on the active graphics device. So
as to print both plots on the same “page,” we have instead called print explicitly, using the
position argument to place each graph on the page. The form of this argument is ¢ (xmin,
ymin, xmax, ymax), with horizontal (x) and vertical (y) coordinates running from 0, 0 (the
lower-left corner of the page) to 1, 1 (the upper-right corner). The argument more=TRUE in
the first call to print indicates that the graphics page is not yet complete.

There are few observations for each subject, and in many instances, no strong within-subject
pattern. Nevertheless, it appears as if the general level of exercise is higher among the patients
than among the controls. As well, the trend for exercise to increase with age appears stronger and
more consistent for the patients than for the controls.

We pursue these impressions by fitting regressions of log.exercise on age for each subject.
Because of the small number of observations per subject, we should not expect very good estimates
of the within-subject regression coefficients. Indeed, one of the advantages of mixed models is that
they can provide improved estimates of the within-subject coefficients (the random effects plus the
fixed effects) by pooling information across subjects.!?

> pat.list <- lmList(log.exercise ~ I(age - 8) | subject,
+ subset = group=="patient", data=Blackmore)

> con.list <- lmList(log.exercise ~ I(age - 8) | subject,
+ subset = group=="control", data=Blackmore)

> pat.coef <- coef(pat.list)

> con.coef <- coef(con.list)

> old <- par(mfrow=c(1, 2))

> boxplot(pat.coef[,1], con.coef[,1], main="Intercepts",
+ names=c("Patients", "Controls"))

> boxplot(pat.coef[,2], con.coef[,2], main="Slopes",

+ names=c("Patients", "Controls"))

> par(old)

Boxplots of the within-subjects regression coefficients are shown in Figure 8. We changed the origin
of age to 8 years, which is the initial observation for each subject, so the intercept represents level
of exercise at the start of the study. As expected, there is a great deal of variation in both the
intercepts and the slopes. The median intercepts are similar for patients and controls, but there is
somewhat more variation among patients. The slopes are higher on average for patients than for
controls, for whom the median slope is close to 0.

2.3.2 Fitting a Mixed Model with Autocorrelated Errors

We proceed to fit a LMM to the data, including fixed effects for age (again, with an origin of 8),
group, and their interaction, and random intercepts and slopes:

> bm.1lme.1 <- lme(log.exercise ~ I(age - 8)*group,
+ random = ~ I(age - 8) | subject, data=Blackmore)
> summary (bm.lme.1)

13Pooled estimates of the random effects provide so-called best-linear-unbiased predictors (or BLUPs) of the regres-
sion coefficients for individual subjects. See help(predict.lme) and the complementary readings.
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Linear mixed-effects model fit by REML
Data: Blackmore

AIC BIC logLik

3630 3669 -1807

Random effects:
Formula: “I(age - 8) | subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.4436 (Intr)
I(age - 8) 0.1648 -0.281
Residual 1.2441

Fixed effects: log.exercise ~ I(age - 8) * group
Value Std.Error DF t-value p-value

(Intercept) -0.2760 0.18237 712 -1.514 0.1306
I(age - 8) 0.0640 0.03136 712 2.041 0.0416
grouppatient -0.3540 0.23529 229 -1.504 0.1338
I(age - 8):grouppatient 0.2399 0.03941 712 6.087 0.0000
Correlation:
(Intr) I(g-8) grpptn
I(age - 8) -0.489
grouppatient -0.775 0.379

I(age - 8):grouppatient 0.389 -0.796 -0.489

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.7349 -0.4245 0.1228 0.5280 2.6362

Number of Observations: 945
Number of Groups: 231

Examining the naive t-tests, there is a small, and marginally statistically significant, average age
trend in the control group (represented by the fixed-effect coefficient for age - 8), and a highly
significant interaction of age with group, reflecting a much steeper average trend in the patient
group. The small and nonsignificant coefficient for group indicates similar age-8 intercepts for the
tmm)groups}4

We test whether the random intercepts and slopes are necessary, omitting each in turn from the
model and calculating a likelihood-ratio statistic, contrasting the refitted model with the original
model:

> bm.lme.2 <- update(bm.lme.l, random = ~ 1 | subject)
> anova(bm.lme.1, bm.lme.2) # test for random slopes

Model df AIC BIC logLik Test L.Ratio p-value
bm.1lme.1 1 8 3630 3669 -1807
bm.1lme.2 2 6 3644 3673 -1816 1 vs 2 18.12 0.0001

“Unfortunately, the pbkrtest package will not provide corrected standard errors and degrees of freedom for models
fit by 1me (as opposed to lmer).
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> bm.lme.3 <- update(bm.lme.l, random = ~ I(age - 8) - 1 | subject)
> anova(bm.lme.1, bm.lme.3) # test for random intercepts

Model df AIC BIC loglik Test L.Ratio p-value
bm.1lme.1 1 8 3630 3669 -1807
bm.lme.3 2 6 3834 3863 -1911 1 vs 2 207.9 <.0001

The tests are highly statistically significant, particularly for random intercepts, suggesting that
both random intercepts and random slopes are required.

Let us next consider the possibility that the within-subject errors (the e;;s in the mixed model
of Equation 1 on page 2) are autocorrelated — as may well be the case, because the observations
are taken longitudinally on the same subjects. The lme function incorporates a flexible mecha-
nism for specifying error-correlation structures, and supplies constructor functions for several such
structures.'® Most of these correlation structures, however, are appropriate only for equally spaced
observations. An exception is the corCAR1 function, which permits us to fit a continuous first-order
autoregressive process in the errors. Suppose that €;; and €; 4, are errors for subject ¢ separated
by s units of time, where s need not be an integer; then, according to the continuous first-order
autoregressive model, the correlation between these two errors is p(s) = #¥l where 0 < ¢ < 1.
This appears a reasonable specification in the current context, where there are at most n; = 5
observations per subject.

Fitting the model with CAR1 errors to the data produces a convergence failure:

> bm.1lme.4 <- update(bm.lme.l, correlation = corCAR1(form = ~ age | subject))

Error in lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,
nlminb problem, convergence error code = 1
message = iteration limit reached without convergence (10)

The correlation structure is given in the correlation argument to 1me (here as a call to corCAR1);
the form argument to corCAR1 is a one-sided formula defining the time dimension (here, age) and
the group structure (subject). With so few observations within each subject, it is difficult to sepa-
rate the estimated correlation of the errors from the correlations among the observations induced by
clustering, as captured by subject-varying intercepts and slopes. This kind of convergence problem
is a common occurrence in mixed-effects modeling.

We will therefore fit two additional models to the data, each including either random intercepts
or random slopes (but not both) along with autocorrelated errors:

> bm.1lme.5 <- update(bm.lme.1l, random = ~ 1 | subject,

+ correlation = corCAR1(form = ~ age [subject)) # random intercepts (not slopes)
> bm.Ilme.6 <- update(bm.lme.l, random = ~ I(age - 8) - 1 | subject,

+ correlation = corCAR1(form = ~ age [subject)) # random slopes (not intercepts)

These models and our initial model without autocorrelated errors (bm.lme.1) are not properly
nested for likelihood-ratio tests — indeed bm.1me.5 and bm.1lme6 have the same number of param-
eters — but we can examine the maximimzed restricted log-likilihood under the models along with
the AIC and BIC model-selection criteria:

5 A similar mechanism is provided for modeling non-constant error variance, via the weights argument to 1me. See
the documentation for 1me for details. In contrast, the lmer function in the lmed package does not accommodate
autocorrelated errors, which is why we used 1me for this example.
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> table <- matrix(0, 3, 3)

> table[, 1] <- c(logLik(bm.lme.1), logLik(bm.lme.5), logLik(bm.lme.6))
> table[, 2] <- c¢(BIC(bm.lme.1), BIC(bm.lme.5), BIC(bm.lme.6))

> table[, 3] <- c(AIC(bm.1lme.1), AIC(bm.lme.5), AIC(bm.lme.6))

> colnames(table) <- c("logLik", "BIC", "AIC")

> rownames (table) <- c("bm.Ilme.1", "bm.lme.5", "bm.lme.6")

> table

loglik BIC AIC
bm.lme.1 -1807 3669 3630
bm.1lme.5 -1795 3639 3605
bm.1lme.6 -1803 3654 3620

All of these criteria point to model bm.1lme.5, with random intercepts, a fixed age slope (within
patient/control groups), and autocorrelated errors.

Although we expended some effort in modeling the random effects, the estimates of the fixed
effects, and their standard errors, do not depend critically on the random-effect specification of the
model, also a common occurrence:

> compareCoefs(bm.1lme.1, bm.lme.5, bm.lme.6)

Call:

1: 1lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,
random = “I(age - 8) | subject)

2: lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,
random = ~1 | subject, correlation = corCAR1(form = “age | subject))

3: lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,
random = “I(age - 8) - 1 | subject, correlation = corCAR1(form = ~age |
subject))

Est. 1 SE 1 Est. 2 SE 2 Est. 3 SE 3

(Intercept) -0.2760 0.1824 -0.3070 0.1895 -0.3178 0.1935

I(age - 8) 0.0640 0.0314 0.0728 0.0317 0.0742 0.0365

grouppatient -0.3540 0.2353 -0.2838 0.2447 -0.2487 0.2500

I(age - 8):grouppatient 0.2399 0.0394 0.2274 0.0397 0.2264 0.0460

The summary for model bm.1me.5 is as follows:

> summary (bm.lme.5)

Linear mixed-effects model fit by REML
Data: Blackmore

AIC BIC loglik

3605 3639 -1795

Random effects:

Formula: "1 | subject
(Intercept) Residual

StdDev: 1.15 1.529
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Correlation Structure: Continuous AR(1)
Formula: ~“age | subject
Parameter estimate(s):

Phi
0.6312

Fixed effects: log.exercise ~ I(age - 8) * group
Value Std.Error DF
-0.30697 0.18950 712

(Intercept)
I(age - 8)
grouppatient

I(age - 8):grouppatient

Correlation:

I(age - 8)
grouppatient
I(age - 8):grouppatient 0.441

0.07278 0.03168 712
-0.28383  0.24467 229

(Intr)
-0.553
-0.775

0.22744 0.03974 712

I(g-8) grpptn

0.428
-0.797 -0.556

Standardized Within-Group Residuals:

Min

Q1

Med Q

3

Max

-2.9431 -0.4640 0.1732 0.5869 2.0220

Number of Observations: 945

Number of Groups: 231

t-value p-value
-1.620 0.1057
2.297 0.0219
-1.160 0.2472
5.723 0.0000

There is, therefore, a moderately large estimated error autocorrelation, <$ = .631.

To get a more concrete sense of the fixed effects, using model bm.1me.5 (which includes auto-
correlated errors and random intercepts, but not random slopes), we employ the predict method
for 1me objects to calculate fitted values for patients and controls across the range of ages (8 to 18)
represented in the data:

> pdata <- expand.grid(age=seq(8, 18, by=2), group=c("patient", "control"))
> pdata$log.exercise <- predict(bm.lme.5, pdata, level=0)

> pdata$exercise <- (2 pdata$log.exercise) - 5/60

> pdata

age
8
10
12
14
16
18
8
10
12
14
16
18

© 00 N O O WN -

= e
= O

—_
N

group log.exercise exercise

patient
patient
patient
patient
patient
patient
control
control
control
control
control
control

.590801
.009641
.610082
.210523
.810964
.411405
.306970
.161409
.015847
.129715
.275277
.420838

0.

= = =, O O O Ul w N+~ O

5806
.9234
.4430
.2309
.4254
.2366
. 7250
.8108
.9057
.0107
.1269
.25564
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Figure 9: Fitted values representing estimated fixed effects of group, age, and their interaction.

Specifying level=0 in the call to predict produces estimates of the fixed effects. The expression
(2 pdata$log.exercise) - 5/60 translates the fitted values of exercise from the log, scale back
to hours/week.

>
+
>
>
>
+

Finally, we plot the fitted values (Figure 9):

plot (pdata$age, pdata$exercise, type="n",

xlab="Age (years)", ylab="Exercise (hours/week)")

points(pdata$age[1:6], pdata$exercisel[1:6], type="b", pch=19, 1wd=2)
points(pdata$age([7:12], pdata$exercise[7:12], type="b", pch=22, lty=2, lwd=2)
legend("topleft", c("Patients", "Controls"), pch=c(19, 22),

1ty=c(1,2), 1lwd=2, inset=0.05)

Essentially the same graph (Figure 10) can be constructed by the effects package, with the added
feature of confidence intervals for the estimated effects:

>
+
+
+
+
+
+
+

plot(Effect(c("age", "group"), bm.lme.5, xlevels=list(age=seq(8, 18, by=2)),

transformation=1ist (link=function(x) log2(x + 5/60),
inverse=function(x) 2°x - 5/60)),
multiline=TRUE, ci.style="bars",
xlab="Age (years)", ylab="Exercise (hours/week)",
rescale.axis=FALSE, rug=FALSE, colors=c("black", "black"),
key.args=list(x = 0.20, y = 0.75, corner = c(0, 0), padding.text = 1.25),
main="")

It is apparent that the two groups of subjects have similar average levels of exercise at age 8, but
that thereafter the level of exercise increases much more rapidly for the patient group than for the
controls.
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Figure 10: Plot produced using the Effect function in the effects package.

3 Generalized Linear Mixed Models

Generalized linear mized models (GLMMs) bear the same relationship to LMMs that GLMs bear
to linear models (see Chapters 4 and 5 of the text). GLMMs add random effects to the linear
predictor of a GLM and express the expected value of the response conditional on the random
effects: The link function g(-) is the same as in generalized linear models. In the GLMM, the
conditional distribution of y;;, the response for observation j in group 4, given the random effects,
is (most straightforwardly) a member of an exponential family, with mean p;;, variance

Var(yi;) = oV (piz) \ij

and covariances

Cov(yij, yijr) = ¢\/V(Mij)\/v(mj'))\ijjf

where ¢ is a dispersion parameter and the function V'(11;;) depends on the distributional family to
which Y belongs. Recall, for example, that in the binomial and Poisson families the dispersion is

fixed to 1, and that in the Gaussian family V() = 1. Alternatively, for quasi-likelihood estimation,
V(-) can be given directly.'6

16 A5 in the generalized linear model, see Section 5.10.3 of the text.
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The GLMM may therefore be written as

Nij = P14 Baw2ij + - -+ + Bppij + b1iziij + - - - + bgiZgij
9(wij) = E(Yijlbii, - - bgi) = 1ij
bri ~ N (0,97), Cov(bys, brs) = s
bii, birs are independent for i # i
Var(y;;) = ¢V (pij)Aij
Cov(yij yijr) ¢\/V (i) \/V (1) Niggr

Yij, ¥i; are independent for ¢ # i’

where 7;; is the linear predictor for observation j in cluster i; the fixed-effect coefficients (3s),
random-effect coefficients (bs), fixed-effect regressors (xs), and random-effect regressors (zs) are
defined as in the LMM.!7

In matrix form, the GLMM is

n; = XiB + Z;b; (5)
9(p;) = g[E(yilbi)] = n;
b; ~ N, (0,%)
b;, b, are independent for i # 4’
E(yilbi) = p; (6)
V(yilbi) = Vl/ (1) AV () (7)

yi,yi are independent for i # 4’
where

e y; is the n; x 1 response vector for observations in the ith of m groups;

e 1, is the n; x 1 expectation vector for the response, conditional on the random effects;

e 1, is the n; x 1 linear predictor for the elements of the response vector;

e ¢(-) is the link function, transforming the conditional expected response to the linear predictor;
e X, is the n; x p model matrix for the fixed effects of observations in group i;

e (3 is the p x 1 vector of fixed-effect coefficients;

e 7, is the n; X ¢ model matrix for the random effects of observations in group i;

e b; is the ¢ x 1 vector of random-effect coefficients for group i;

e W is the ¢ X ¢ covariance matrix of the random effects;

e A, is n; X n; and expresses the dependence structure for the conditional distribution of the
response within each group—for example, if the observations are sampled independently in
each group, A; = Inl,18

7 The glmer function in the Ime4 package, which we will use to fit GLMMs, is somewhat more restrictive, setting
)\kk =1 and )‘kk’ =0.
18 As mentioned, this restriction is imposed by the glmer function in the lme4 package. See footnote 17.
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o V2(u;) = diag[\/V (uij)]; and

e ¢ is the dispersion parameter.

3.1 Example: Migraine Headaches

In an effort to reduce the severity and frequency of migraine headaches through the use of biofeed-
back training, Tammy Kostecki-Dillon collected longitudinal data on migraine-headache sufferers.
The 133 patients who participated in the study were each given four weekly sessions of biofeedback
training. The patients were asked to keep daily logs of their headaches for a period of 30 days prior
to training, during training, and post-training, to 100 days after training began. Compliance with
these instructions was low, and there is therefore quite a bit of missing data; for example, only 55
patients kept a log prior to training. On average, subjects recorded information on 31 days, with
the number of days ranging from 7 to 121. Subjects were divided into three self-selected groups:
those who discontinued their migraine medication during the training and post-training phase of
the study; those who continued their medication, but at a reduced dose; and those who continued
their medication at the previous dose.

We will use a binomial GLMM—specifically, a binary logit mixed-effects model—to analyze the
incidence of headaches during the period of the study. Examination of the data suggested that
the incidence of headaches was invariant during the pre-training phase of the study, increased (as
was expected by the investigator) at the start of training, and then declined at a decreasing rate.
We decided to fit a linear trend prior to the start of training (before time 0), possibly to capture
a trend that we failed to detect in our exploration of the data, and to transform time at day 1
and later (which, for simplicity, we term “time post-treatment”) by taking the square-root.2? In
addition to the intercept, representing the level of headache incidence at the end of the pre-training
period, we include a dummy regressor coded 1 post-treatment, and 0 pre-treatment, to capture the
anticipated increase in headache incidence at the start of training; dummy regressors for levels of
medication; and interactions between medication and treatment, and between medication and the
pre- and post-treatment time trends. Thus, the fixed-effects part of the model is

logit(ms;) = B1 + Bamis + Bama; + Bapij + Bstoij + Ber/t1ij
+ Brmaipij + Bsmaipi; + Bomiitoij + Bromaitoi;

+ Brimain/tii; + Bramaiy/tiij
where
e 7;; is the probability of a headache for individual i = 1,...,133, on occasion j = 1,...,n;;

e my; is a dummy regressor coded 1 if individual ¢ continued taking migraine medication at a
reduced dose post-treatment, and meo; is a dummy regressor coded 1 if individual 4 continued
taking medication at its previous dose post-treatment;

e pj; is a dummy regressor coded 1 post-treatment (i.e., after time 0) and 0 pre-treatment;

e to;; is time (in days) pre-treatment, running from —29 through 0, and coded 0 after treatment
began; and

19The data are described by Kostecki-Dillon, Monette, and Wong (1999) and were generously made available to
me by Georges Monette, who performed the original data analysis. The analysis reported here is similar to his.

20The original analysis of the data by Georges Monette used regression splines for time-trends, with results generally
similar to those reported here.
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e t1;; is time (in days) post-treatment, running from 1 through 99, and coded 0 pre-treatment.

We will include patient random effects for the intercept (i.e., the level of headache incidence pre-
treatment), for the post-treatment dummy regressor, and for the pre- and post-treatment time-trend
regressors.

The data for this example are in the KosteckiDillon data frame in the car package. We begin
with a bit of data-management:

> KosteckiDillon$treatment <- factor(with(KosteckiDillon,

+ ifelse(time > 0, "yes", "mo")))

> KosteckiDillon$pretreat <- with(KosteckiDillon, ifelse(time > 0, 0, time))
> KosteckiDillon$posttreat <- with(KosteckiDillon, ifelse(time > 0, time, 0))
> head (KosteckiDillon, 10)

id time dos hatype age airq medication headache sex treatment pretreat
1 1 -11 753 Aura 30 9 continuing yes female no -11
2 1 -10 754 Aura 30 7 continuing yes female no -10
3 1 -9755 Aura 30 10 continuing yes female no -9
4 1 -8756 Aura 30 13 continuing yes female no -8
5 1 -7 757 Aura 30 18 continuing yes female no -7
6 1 -6 758 Aura 30 19 continuing yes female no -6
7 1 -5759 Aura 30 17 continuing yes female no -5
8 1 22786 Aura 30 21 continuing yes female yes 0
9 1 23 787 Aura 30 21 continuing yes female yes 0
10 1 24 788 Aura 30 18 continuing yes female yes 0
posttreat
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 22
9 23
10 24

There are variables in the data set that we’re not using in this analysis. For details, see 7Kosteck-
iDillon.

GLMMSs may be fit by the glmer function (pronounced “glimmer”) in the lme4 package. As is
also true for lmer, there is no provision for autocorrelated within-subject errors, and in the case of
a GLMM, we don’t have the alternative of using the nlme package. Even without explicit termporal
autocorrelation, however, the random effects are complex for a fairly small small data set, and we
will try to simplify this part of the model. Specifying fixed and random effects in glmer is the same
as in 1lmer; additionally, as for glm, we may specify a distributional family argument, which, in
turn, takes an optional 1link argument. In the current example, we use the default logit link for
the binomial family, and so do not have to give the link explicitly.

Our initial attempt to fit a GLMM to the migraine-headaches data produces a convergence
warning:
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> mod.mig.1 <- glmer (headache
+ medication * (treatment + pretreat + sqrt(posttreat))
+ (treatment + pretreat + sqrt(posttreat) | id),

# warning: time-consuming!

+

+ data=KosteckiDillon, family=binomial)

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,
Model failed to converge with
max|grad| = 0.00623063 (tol = 0.001, component 2)

The glmer function make provision for alternative optimizers, and after a bit of experimentation,
we were able to obtain convergence using the optimx optimizer in the optimx package, specifying
the optimization method as "nlminb"; optimx produces its own warning but nevertheless converges
to a solution:

> library(optimx)
> mod.mig.la <- glmer(headache ~
+ medication * (treatment + pretreat + sqrt(posttreat))
+ (treatment + pretreat + sqrt(posttreat) | id),
data=KosteckiDillon, family=binomial,
control=glmerControl (optimizer="optimx",
optCtrl=list (method="nlminb")))

+ + + +

Warning message:

In optimx.check(par, optcfg$ufn, optcfg$ugr, optcfgPuhess, lower,
Parameters or bounds appear to have different scalings.
This can cause poor performance in optimization.
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.

As it turns out, the two solutions are nearly identical:

> compareCoefs(mod.mig.1, mod.mig.1la)

Call:

1: glmer(formula = headache ~ medication * (treatment + pretreat +
sqrt (posttreat)) + (treatment + pretreat + sqrt(posttreat) | id), data
KosteckiDillon, family = binomial)

2: glmer(formula = headache ~ medication * (treatment + pretreat +
sqrt(posttreat)) + (treatment + pretreat + sqrt(posttreat) | id), data = KD,

family = binomial, control = glmerControl(optimizer = "optimx", optCtrl =
list (method = "nlminb")))
Est. 1 SE 1 Est. 2 SE 2
(Intercept) 2.27e-01 6.12e-01 2.27e-01 6.12e-01
medicationreduced 1.96e+00 8.86e-01 1.96e+00 8.86e-01
medicationcontinuing 2.79e-01 6.86e-01 2.79e-01 6.86e-01
treatmentyes 3.38e-01 7.12e-01 3.40e-01 7.12e-01
pretreat -1.95e-02 4.18e-02 -1.97e-02 4.19e-02
sqrt(posttreat) -2.72e-01 9.21e-02 -2.72e-01 9.22e-02
medicationreduced:treatmentyes 4.51e-01 1.03e+00 4.47e-01 1.04e+00
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medicationcontinuing:treatmentyes 1.16e+00 8.13e-01 1.16e+00 8.14e-01

medicationreduced:pretreat 6.22e-02 6.03e-02 6.26e-02 6.03e-02
medicationcontinuing:pretreat -6.59e-06 4.76e-02 2.40e-04 4.77e-02
medicationreduced:sqrt(posttreat) -1.05e-02 1.29e-01 -1.04e-02 1.29e-01

medicationcontinuing:sqrt(posttreat) 1.56e-02 1.13e-01 1.55e-02 1.13e-01

Thus the convergence warning in our intial attempt was likely a false alarm; in general, glmer
is conservative about detecting convergence failures. Maximizing the likelihood for a GLMM is
a much more formidible task than for a LMM, and numerical problems are common. Existing
methods are approximations because exact evaluation of the likelihood is intractable. The glmer
function implements various numerical methods, and by default uses a Laplace approximation,
which is a compromise between accuracy and computational speed.

Type-II Wald tests for the fixed effects, computed by the Anova function in the car package,
reveal that all of the interactions are non-significant, along with the pre-treatment trend, while
the medication and treatment effects, along with the post-treatment trend, are highly statistically
significant:

> Anova(mod.mig.1a)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: headache
Chisq Df Pr(>Chisq)

medication 22.34 2 1.4e-05
treatment 13.32 1 0.00026
pretreat 0.38 1 0.53782
sqrt (posttreat) 34.60 1 4.1e-09
medication:treatment 2.38 2 0.30357
medication:pretreat 1.86 2 0.39392
medication:sqrt(posttreat) 0.06 2 0.96955

Before examining the estimated fixed effects in the model, we will attempt to simplify the
random effects, removing each random effect in turn and performing a likelihood-ratio test relative
to the initial model:

> mod.mig.2 <- update(mod.mig.la,

+ formula = headache ~
+ medication * (treatment + pretreat + sqrt(posttreat))
+ + (-1 + as.numeric(treatment == "yes") + pretreat + sqrt(posttreat) | id))

> anova(mod.mig.la, mod.mig.2)

Data: KosteckiDillon
Models:
mod.mig.2: headache

medication + treatment + pretreat + sqrt(posttreat) +

mod.mig.2: (-1 + as.numeric(treatment == "yes") + pretreat + sqrt(posttreat) |
mod.mig.2: id) + medication:treatment + medication:pretreat + medication:sqrt(posttreat
mod.mig.la: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +
mod.mig.la: (treatment + pretreat + sqrt(posttreat) | id)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mod.mig.2 18 4384 4498 -2174 4348
mod.mig.la 22 4373 4512 -2164 4329 19.7 4 0.00057
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> pval(19.701, df=4) # no random intercepts
[1] 0.0003839

> mod.mig.3 <- update(mod.mig.1la,

+ formula = headache ~
+ medication * (treatment + pretreat + sqrt(posttreat))
+ + (pretreat + sqgrt(posttreat) | id))

> anova(mod.mig.la, mod.mig.3)

Data: KosteckiDillon

Models:
mod.mig.3: headache ~ medication + treatment + pretreat + sqrt(posttreat) +
mod.mig.3: (pretreat + sqrt(posttreat) | id) + medication:treatment +
mod.mig.3: medication:pretreat + medication:sqrt(posttreat)
mod.mig.la: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +
mod.mig.1la: (treatment + pretreat + sqrt(posttreat) | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mod.mig.3 18 4377 4491 -2170 4341
mod.mig.la 22 4373 4512 -2164 4329 12.1 4 0.017

> pval(12.092, df=4) # no random treatment
[1] 0.01188

> mod.mig.4 <- update(mod.mig.1la,

+ formula = headache ~
+ medication * (treatment + pretreat + sqrt(posttreat))
+ + (treatment + sqrt(posttreat) | id))

> anova(mod.mig.la, mod.mig.4)

Data: KosteckiDillon

Models:
mod.mig.4: headache ~ medication + treatment + pretreat + sqrt(posttreat) +
mod.mig.4: (treatment + sqrt(posttreat) | id) + medication:treatment +
mod.mig.4: medication:pretreat + medication:sqrt(posttreat)
mod.mig.la: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +
mod.mig.1la: (treatment + pretreat + sqrt(posttreat) | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mod.mig.4 18 4370 4484 -2167 4334
mod.mig.la 22 4373 4512 -2164 4329 5.8 4 0.21

> pval(5.7963, df=4) # no random pretreat
[1] 0.1684

> mod.mig.5 <- update(mod.mig.l, # this fails with mod.mig.la
+ formula = headache ~

+ medication * (treatment + pretreat + sqrt(posttreat))
+ + (treatment + pretreat | id))

> anova(mod.mig.1, mod.mig.5)
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Data: KosteckiDillon

Models:
mod.mig.5: headache ~ medication + treatment + pretreat + sqrt(posttreat) +
mod.mig.5 (treatment + pretreat | id) + medication:treatment + medication:pretreat +
mod.mig.5: medication:sqrt(posttreat)
mod.mig.1: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +
mod.mig.1 (treatment + pretreat + sqrt(posttreat) | id)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mod.mig.5 18 4381 4495 -2172 4345
mod.mig.1 22 4373 4512 -2164 4329 16.2 4 0.0027

> pval(16.214, df=4) # no random posttreat
[1] 0.001885

As in LMMs, we use our pval function to correct chisquare tests for the variance/covariance
components, reflecting the fact that the null values of variances are on the boundary of the parameter
space. As well, we were unable to fit mod.mig.5 using optimx without producing an error, and so
we updated mod.mig.1 rather than mod.mig.1a to obtain mod.mig.5 and the corresponding test
for the random post-treatment effect. The relatively convoluted specification of mod.mig.2, where
the dummy regressor for treatment is generated directly, rather than putting the factor treatment
in the random-effects formula, is necessary to suppress the random effect for the intercept; simply
specifying -1 with the factor treatment in the random-effects formula places two dummy regressors
in the random-effects model, fitting different intercepts for each of the two levels of treatment,
and producing a model equivalent to mod.mig. la.

On the basis of these tests for the fixed and random effects, we specified a final model for the
migraines data that eliminates the fixed-effect interactions with medication and the pre-treatment
trend fixed and random effects, obtaining the following estimates for the fixed effects and variance
components:

> mod.mig.6 <- glmer (headache ~ medication + treatment + sqrt(posttreat)

+ + (treatment + sqrt(posttreat) | id),

+ data=KosteckiDillon, family=binomial,

+ control=glmerControl (optimizer="optimx",

+ optCtrl=list (method="nlminb")))

> summary (mod.mig.6)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )

Formula: headache ~ medication + treatment + sqrt(posttreat) + (treatment +

sqrt(posttreat) | id)

Data: KosteckiDillon

Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))

AIC BIC logLik deviance df.resid
4369 4439 -2174 4347 4141

Scaled residuals:
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Min 1Q Median 3Q Max
-5.182 -0.646 0.260 0.580 3.690

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 1.7011 1.304
treatmentyes 1.7126 1.309 -0.12
sqrt(posttreat) 0.0571  0.239 0.11 -0.66

Number of obs: 4152, groups: id, 133

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2459 0.3438 -0.72 0.4745
medicationreduced 2.0501 0.4679 4.38 1.2e-05
medicationcontinuing 1.1553 0.3838 3.01 0.0026
treatmentyes 1.0608 0.2439 4.35 1.4e-05
sqrt (posttreat) -0.2684 0.0449 -5.98 2.2e-09

Correlation of Fixed Effects:

(Intr) mdctnr mdctnc trtmnt
medictnrdcd -0.674
mdctncntnng -0.828 0.656
treatmentys -0.215 -0.053 -0.049
sqrt(psttr) 0.016 -0.009 -0.002 -0.685

Figure 11 shows the estimated fixed effects plotted on the probability scale; as a consequence,
the post-treatment trends for the three medication conditions are not parallel, as they would be if
plotted on the logit scale:

> new.1 <- expand.grid(treatment="yes", posttreat=1:99,

+ medication=c("reduced", "continuing", "none"))

> new.1$treatment <- factor("yes", levels=c("no", "yes"))

> new.2 <- expand.grid(treatment="no", posttreat=-29:0,

+ medication=c("reduced", "continuing", "none"))

> new.2$posttreat <- 0

> new.2$treatment <- factor("mo", levels=c("no", "yes"))

> new <- rbind(new.2, new.1)

> new$p <- predict(mod.mig.6, newdata=new, re.form=NA, type="response')
> new$time <- c(rep(-29:0, 3),rep(1:99, 3))

> plot(p ~ time, type="n", data=new, xlab="Time (days)",

+ ylab="Fitted Probability of Headache")

> abline(v=0, col="gray")

>
+
>
+
>
+
>

lines(p ~ time, subset
lty=1, lwd=2)

lines(p ~ time, subset = medication == "reduced", data=new,
1ty=2, lwd=2)

lines(p ~ time, subset = medication == "continuing", data=new,
1ty=3, 1lwd=2)

legend("topright", lty=1:3, lwd=2,

medication == "none", data=new,
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Figure 11: Fixed effects from a binomial GLMM fit to the migraines data. Treatment started at
time 1.

+ legend=c("none", "reduced", "continuing"), title="Medication",
+ inset=.02)

It is apparent from this graph that after an initial increase at the start of treatment, the incidence
of headaches declined to substantially below its pre-treatment level. As well, the incidence of
headaches was lowest among the patients who discontinued their medication, and highest among
those who reduced their medication; patients who continued their medication at pre-training levels
were intermediate in headache incidence. Of course, self-selection of the medication groups renders
interpretation of this pattern ambiguous.

4 Nonlinear Mixed Models

<to come>

5 Complementary Reading and References

Much of the material in this appendix is adapted from Fox (2015, Chaps. 23 and 24). A very
brief treatment of mixed models may be found in Weisberg (2014, Sec. 7.4). Snijders and Bosker
(2012) and Raudenbush and Bryk (2002) are two accessible books that emphasize hierarchical
linear and, to a lesser extent, generalized-linear models. Gelman and Hill (2007) develop mixed
models in the more general context of regression analysis. Stroup (2013) presents a more formal and
comprehensive development of generalized linear mixed models, treating other regression models,
such as linear models, generalized linear models, and linear mixed-effects models as special cases
(and emphasizing SAS software for fitting these models).
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