##------------------------------------## ## Script for Part 2: Data in S ## ## John Fox ## ## An Introduction to R ## ## UCLA Feb. 2005 ## ##------------------------------------## # Reading data # entering data at the keyboard x <- c(1,2,3,4) # numeric data x names <-c ('John', 'Georges', 'Mary') # character data names v <- c(TRUE, FALSE) # logical data v cooperation <- scan() 49 64 37 52 68 54 61 79 64 29 27 58 52 41 30 40 39 44 34 44 cooperation condition <- rep(c("public", "anonymous"), c(10,10)) condition sex <- rep(rep(c("male", "female"), c(5,5)), 2) sex Guyer <- data.frame(cooperation, condition, sex) Guyer # reading data from a file into a data frame Prestige <- read.table(file.choose(), header=TRUE) Prestige # accessing data in a package library(car) data(Duncan) Duncan # The search path search() prestige Duncan[,"prestige"] attach(Duncan) prestige search() attach(Prestige) search() prestige # prestige in Prestige shadows prestige in Duncan Duncan[,"prestige"] detach(Prestige) search() prestige detach(Duncan) # missing data data(Freedman) attach(Freedman) Freedman[1:10,] density median(density) median(density, na.rm=TRUE) plot(density, crime) identify(density, crime, rownames(Freedman)) log(c(1, 10, NA, 100), base=10) plot(log(density, base=10), crime) lm(crime ~ log(density, base=10)) abline(lm(crime ~ log(density, base=10)), lty=2) good <- complete.cases(density, crime) good lines(lowess(log(density[good], base=10), crime[good])) options("na.action") detach(Freedman) Freedman.good <- na.omit(Freedman) Freedman.good[1:10,] dim(Freedman.good) dim(Freedman) # numeric variables, character variables, and factors objects() remove(good, Freedman.good) condition is.character(condition) condition <- as.factor(condition) condition remove(cooperation, condition, sex) attach(Guyer) condition is.character(condition) is.factor(condition) summary(Guyer) # Matrices, arrays, and lists A <- matrix(1:12, 3, 4) A B <- matrix(c('a','b','c'), 4, 3, byrow=TRUE) B dim(A) dim(B) v <- sample(10,10) v dim(v) array.3 <- array(1:24, c(4,3,2)) array.3 dim(array.3) list.1 <- list(mat.1=A, mat.2=B, vec=v) list.1 # Indexing (time permitting) # vectors v v[2] # one element v[c(4,2,6)] # several elements v[c(4,2,4)] # elements may be repeated v[-c(2,4,6,8,10)] # omitting elements names(v) <- letters[1:10] v names(v) v[c('f','i','g')] # indexing by names v < 6 v[v < 6] # logical indexing vv <- v vv vv[c(1,3,5)] <- c(1,2,3) # replacing elements vv vv[c('b','d','f','h','j')] <- 0 vv remove(vv) # matrices A A[2,3] A[c(1,2), 2] A[c(1,2), c(2,3)] A[c(1,2),] A[c(1,2), 2, drop=FALSE] # retain column dimension A[, -c(1,3)] # delete columns 1 and 3 A[-1, -2] # delete row 1 and column 2 rownames(A) <- c('one', 'two', 'three') colnames(A) <- c('w','x','y', 'z') A A[c('one','two'), c('x','y')] A[c(TRUE, FALSE, TRUE),] AA <- A AA AA[1,] <- 0 AA remove(AA) # lists list.1 list.1[c(2,3)] list.1[2] # a one-element list class(list.1[2]) list.1[[2]] # a list element class(list.1[[2]]) list.1["mat.1"] list.1[["mat.1"]] list.1$mat.1 list.1$mat.1 <- matrix(1, 2, 2) # replacing a list element list.1$title <- 'an arbitrary list' # adding an element list.1$mat.2<-NULL # removing an element list.1 # data frames attach(Guyer) Guyer Guyer[,1] Guyer[,'cooperation'] Guyer[c(1,2),] Guyer[c('1','2'), 'cooperation'] Guyer[-(6:20),] sex=='female' & condition=='public' Guyer[sex=='female' & condition=='public',] Guyer$cooperation Guyer[['cooperation']] Guyer['cooperation'] # a one-column data frame