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Logit and Probit Models 1

1. Topics
I Models for dichotmous data

I Models for polytomous data (as time permits)

I Implementation of logit and probit models in R
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2. Models for Dichotomous Data
I To understand why logit and probit models for qualitative data are

required, let us begin by examining a representative problem, attempting
to apply linear regression to it:
• In September of 1988, 15 years after the coup of 1973, the people

of Chile voted in a plebiscite to decide the future of the military
government. A ‘yes’ vote would represent eight more years of military
rule; a ‘no’ vote would return the country to civilian government. The
no side won the plebiscite, by a clear if not overwhelming margin.

• Six months before the plebiscite, FLACSO/Chile conducted a national
survey of 2,700 randomly selected Chilean voters.
· Of these individuals, 868 said that they were planning to vote yes,

and 889 said that they were planning to vote no.

· Of the remainder, 558 said that they were undecided, 187 said that
they planned to abstain, and 168 did not answer the question.
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· I will look only at those who expressed a preference.

• Figure 1 plots voting intention against a measure of support for the
status quo.
· Voting intention appears as a dummy variable, coded 1 for yes, 0 for

no.

· Support for the status quo is a scale formed from a number of
questions about political, social, and economic policies: High scores
represent general support for the policies of the miliary regime.

• Does it make sense to think of regression as a conditional average
when the response variable is dichotomous?
· An average between 0 and 1 represents a ‘score’ for the dummy

response variable that cannot be realized by any individual.
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Figure 1. The Chilean plebiscite data: The solid straight line is a linear
least-squares fit; the solid curved line is a logistic-regression fit; and the
broken line is from a nonparametric kernel regression with a span of .4.The
individual observations are all at 0 or 1 and are vertically jittered.
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· In the population, the conditional average ( |) is the proportion
of 1’s among those individuals who share the value  for the
explanatory variable — the conditional probability  of sampling a
‘yes’ in this group:

 ≡ Pr() ≡ Pr( = 1| = )

and thus,
( |) = (1) + (1− )(0) = 

• If  is discrete, then in a sample we can calculate the conditional
proportion for  at each value of .
· The collection of these conditional proportions represents the sample

nonparametric regression of the dichotomous  on .

· In the present example,  is continuous, but we can nevertheless
resort to strategies such as local averaging, as illustrated in the
figure.
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2.1 The Linear-Probability Model
I Although non-parametric regression works here, it would be useful to

capture the dependency of  on  as a simple function, particularly
when there are several explanatory variables.

I Let us first try linear regression with the usual assumptions:
 =  +  + 

where  ∼ (0 2), and  and  are independent for  6= .
• If  is random, then we assume that it is independent of .

I Under this model, () =  + , and so
 =  + 

• For this reason, the linear-regression model applied to a dummy
response variable is called the linear probability model.

I This model is untenable, but its failure points the way towards more
adequate specifications:

c° 2010 by John Fox York SPIDA



Logit and Probit Models 7

• Non-normality: Because  can take on only the values of 0 and 1, the
error  is dichotomous as well — not normally distributed:
· If  = 1, which occurs with probability , then

 = 1−()

= 1− ( + )

= 1− 

· Alternatively, if  = 0, which occurs with probability 1− , then
 = 0−()

= 0− ( + )

= 0− 

= −
· Because of the central-limit theorem, however, the assumption of

normality is not critical to least-squares estimation of the normal-
probability model.
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• Non-constant error variance: If the assumption of linearity holds over
the range of the data, then () = 0.
· Using the relations just noted,

 () = (1− )
2 + (1− )(−)2

= (1− )

· The heteroscedasticity of the errors bodes ill for ordinary-least-
squares estimation of the linear probability model, but only if the
probabilities  get close to 0 or 1.

• Nonlinearity: Most seriously, the assumption that () = 0 — that is,
the assumption of linearity — is only tenable over a limited range of
-values.
· If the range of the  ’s is sufficiently broad, then the linear specifica-

tion cannot confine  to the unit interval [0 1].

· It makes no sense, of course, to interpret a number outside of the
unit interval as a probability.
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· This difficulty is illustrated in the plot of the Chilean plebiscite data,
in which the least-squares line produces fitted probabilities below 0
at low levels and above 1 at high levels of support for the status-quo.

I Dummy regressor variables do not cause comparable difficulties
because the general linear model makes no distributional assumptions
about the  ’s.

I Nevertheless, if  doesn’t get too close to 0 or 1, the linear-probability
model estimated by least-squares frequently provides results similar to
those produced by more generally adequate methods.

I One solution — though not a good one — is simply to constrain  to the
unit interval:

 =

⎧⎨⎩ 0 for 0   + 

 +  for 0 ≤  +  ≤ 1
1 for  +   1
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I The constrained linear-probability model fit to the Chilean plebiscite
data by maximum likelihood is shown in Figure 2. Although it cannot
be dismissed on logical grounds, this model has certain unattractive
features:
• Instability: The critical issue in estimating the linear-probability model

is identifying the -values at which  reaches 0 and 1, since the line
 =  +  is determined by these two points. As a consequence,
estimation of the model is inherently unstable.

• Impracticality: It is much more difficult to estimate the constrained
linear-probability model when there are several  ’s.

• Unreasonableness: Most fundamentally, the abrupt changes in slope
at  = 0 and  = 1 are unreasonable. A smoother relationship
between  and , is more generally sensible.
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2.2 Transformations of : Logit and Probit Models
I To insure that  stays between 0 and 1, we require a positive monotone

(i.e., non-decreasing) function that maps the ‘linear predictor’  = +

into the unit interval.
• A transformation of this type will retain the fundamentally linear

structure of the model while avoiding probabilities below 0 or above 1.

• Any cumulative probability distribution function meets this requirement:
 =  () =  ( + )

where the CDF  (·) is selected in advance, and  and  are then
parameters to be estimated.

• If we choose  (·) as the cumulative rectangular distribution then we
obtain the constrained linear-probability model.

• An a priori reasonable  (·) should be both smooth and symmetric,
and should approach  = 0 and  = 1 as asymptotes.
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Figure 2. The solid line shows the constrained linear-probability model fit
by maximum likelihood to the Chilean plebiscite data; the broken line is for
a nonparametric kernel regression.
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• Moreover, it is advantageous if  (·) is strictly increasing, permitting us
to rewrite the model as

−1() =  =  + 

where −1(·) is the inverse of the CDF  (·), i.e., the quantile function.
· Thus, we have a linear model for a transformation of , or —

equivalently — a nonlinear model for  itself.

I The transformation  (·) is often chosen as the CDF of the unit-normal
distribution

Φ() =
1√
2

Z 

−∞
−

1
2
2

or, even more commonly, of the logistic distribution

Λ() =
1

1 + −
where  ≈ 3141 and  ≈ 2718 are the familiar mathematical constants.
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• Using the normal distribution Φ(·) yields the linear probit model :
 = Φ( + )

=
1√
2

Z +

−∞
−

1
2
2

• Using the logistic distribution Λ(·) produces the linear logistic-
regression or linear logit model :

 = Λ( + )

=
1

1 + −(+)

• Once their variances are equated, the logit and probit transformations
are so similar that it is not possible in practice to distinguish between
them, as is apparent in Figure 3.

• Both functions are nearly linear between about  = 2 and  = 8. This
is why the linear probability model produces results similar to the logit
and probit models, except when there are extreme values of .
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Figure 3. The normal and logistic cumulative distribution functions (as a
function of the linear predictor and with variances equated).
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I Despite their similarity, there are two practical advantages of the logit
model:

1. Simplicity: The equation of the logistic CDF is very simple, while the
normal CDF involves an unevaluated integral.
• This difference is trivial for dichotomous data, but for polytomous data,

where we will require the multivariate logistic or normal distribution,
the disadvantage of the probit model is more acute.

2. Interpretability: The inverse linearizing transformation for the logit
model, Λ−1(), is directly interpretable as a log-odds, while the inverse
transformation Φ−1() does not have a direct interpretation.
• Rearranging the equation for the logit model,



1− 
= +

• The ratio (1− ) is the odds that  = 1, an expression of relative
chances familiar to gamblers.
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• Taking the log of both sides of this equation,

log


1− 
=  + 

• The inverse transformation Λ−1() = log[(1− )], called the logit of
, is therefore the log of the odds that  is 1 rather than 0.

• The logit is symmetric around 0, and unbounded both above and
below, making the logit a good candidate for the response-variable
side of a linear model:
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Probability Odds Logit




1− 
log



1− 
01 199 = 00101 −460
05 595 = 00526 −294
10 19 = 01111 −220
30 37 = 04286 −085
50 55 = 1 000

70 73 = 2333 085

90 91 = 9 220

95 955 = 19 294

99 991 = 99 460

c° 2010 by John Fox York SPIDA



Logit and Probit Models 19

• The logit model is also a multiplicative model for the odds:


1− 
= + = 

= 
¡

¢

· So, increasing  by 1 changes the logit by  and multiplies the odds
by .

· For example, if  = 2, then increasing  by 1 increases the odds by
a factor of 2 ≈ 27182 = 7389.

• Still another way of understanding the parameter  in the logit model
is to consider the slope of the relationship between  and .
· Since this relationship is nonlinear, the slope is not constant; the

slope is (1−), and hence is at a maximum when  = 12, where
the slope is 4:
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 (1− )

01  × 0099

05  × 0475

10  × 09

20  × 16

50  × 25

80  × 16

90  × 09

95  × 0475

99  × 0099

· The slope does not change very much between  = 2 and  = 8,
reflecting the near linearity of the logistic curve in this range.

I The least-squares line fit to the Chilean plebescite data has the equationbyes = 0492 + 0394× Status-Quo
• This line is a poor summary of the data.
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I The logistic-regression model, fit by the method of maximum-likelihood,
has the equation

log
byesb no

= 0215 + 321× Status-Quo

• The logit model produces a much more adequate summary of the
data, one that is very close to the nonparametric regression.

• Increasing support for the status-quo by one unit multiplies the odds
of voting yes by 321 = 248.

• Put alternatively, the slope of the relationship between the fitted
probability of voting yes and support for the status-quo at byes = 5 is
3214 = 080.
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2.3 An Unobserved-Variable Formulation
I An alternative derivation posits an underlying regression for a continuous

but unobservable response variable  (representing, e.g., the ‘propensity’
to vote yes), scaled so that

 =

½
0 when  ≤ 0
1 when   0

• That is, when  crosses 0, the observed discrete response  changes
from ‘no’ to ‘yes.’

• The latent variable  is assumed to be a linear function of the
explanatory variable  and the unobservable error variable :

 =  +  − 

I We want to estimate  and , but cannot proceed by least-squares
regression of  on  because the latent response variable is not directly
observed.
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I Using these equations,
 ≡ Pr( = 1) = Pr(  0) = Pr( +  −   0)

= Pr(   + )

• If the errors are independently distributed according to the unit-normal
distribution,  ∼ (0 1), then

 = Pr(   + ) = Φ( + )

which is the probit model.

• Alternatively, if the  follow the similar logistic distribution, then we get
the logit model

 = Pr(   + ) = Λ( + )

I We will return to the unobserved-variable formulation when we consider
models for ordinal categorical data.
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2.4 Logit and Probit Models for Multiple Regression
I To generalize the logit and probit models to several explanatory variables

we require a linear predictor that is a function of several regressors.
• For the logit model,

 = Λ() = Λ( + 11 + 22 + · · · + )

= Λ(x0β)

=
1

1 + −x0β
or, equivalently,

log


1− 
=  + 11 + 22 + · · · + 

= x0β

• For the probit model,
 = Φ() = Φ( + 11 + 22 + · · · + )

I The  ’s in the linear predictor can be as general as in the general linear
model, including, for example:
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• quantitative explanatory variables;

• transformations of quantitative explanatory variables;

• polynomial regressors formed from quantitative explanatory variables;

• dummy regressors representing qualitative explanatory variables; and

• interaction regressors.

I Interpretation of the partial regression coefficients in the general
logit model is similar to the interpretation of the slope in the logit
simple-regression model, with the additional provision of holding other
explanatory variables in the model constant.
• Expressing the model in terms of odds,



1− 
= (+11+···+)

= 
¡
1
¢1 · · · ¡

¢

• Thus,  is the multiplicative effect on the odds of increasing  by 1,
holding the other  ’s constant.

c° 2010 by John Fox York SPIDA

Logit and Probit Models 26

• Similarly, 4 is the slope of the logistic regression surface in the
direction of  at  = 5.

I The general linear logit and probit models can be fit to data by the
method of maximum likelihood.

I Hypothesis tests and confidence intervals follow from general proce-
dures for statistical inference in maximum-likelihood estimation.
• For an individual coefficient, it is most convenient to test the hypothesis
0: = 

(0)
 by calculating the Wald statistic

0 =
 − 

(0)


SE()

where SE() is the asymptotic standard error of .
· The test statistic 0 follows an asymptotic unit-normal distribution

under the null hypothesis.
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• Similarly, an asymptotic 100(1− )-percent confidence interval for  is
given by

 =  ± 2SE()

where 2 is the value from  ∼ (0 1) with a probability of 2 to the
right.

• Wald tests for several coefficients can be formulated from the
estimated asymptotic variances and covariances of the coefficients.

• It is also possible to formulate a likelihood-ratio test for the hypothesis
that several coefficients are simultaneously zero, 0: 1 = ··· =  = 0.
We proceed, as in least-squares regression, by fitting two models to
the data:
· The full model (model 1)

logit() =  + 11 + · · · +  + +1+1 + · · · + 
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· and the null model (model 0)
logit() =  + 01 + · · · + 0 + +1+1 + · · · + 

=  + +1+1 + · · · + 

· Each model produces a maximized likelihood:1 for the full model,
0 for the null model.

· Because the null model is a specialization of the full model, 1 ≥ 0.

· The generalized likelihood-ratio test statistic for the null hypothesis is
20 = 2(log 1 − log 0)

· Under the null hypothesis, this test statistic has an asymptotic
chisquare distribution with  degrees of freedom.

• A test of the omnibus null hypothesis 0: 1 = · · · =  = 0 is obtained
by specifying a null model that includes only the constant, logit() = .
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• The likelihood-ratio test can be inverted to produce confidence
intervals for coefficients.

• The likelihood-ratio test is less prone to breaking down than the Wald
test.
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I An analog to the multiple-correlation coefficient can also be obtained
from the log-likelihood.
• By comparing log 0 for the model containing only the constant with
log 1 for the full model, we can measure the degree to which using
the explanatory variables improves the predictability of  .

• The quantity 2 ≡ −2 log , called the residual deviance under the
model, is a generalization of the residual sum of squares for a linear
model.

• Thus,

2 = 1− 21
20

= 1− log 1
log 0

is analogous to 2 for a linear model.
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2.5 Illustration: SLID Data
I To illustrate logistic regression, I will use data from the 1994 wave of the

Statistics Canada Survey of Labour and Income Dynamics (the “SLID”).

I Confining attention to married women between the ages of 20 and 35, I
examine how the labor-force participation of these women is related to
several explanatory variables:
• the region of the country in which the woman resides;

• the presence of children between zero and four years of age in the
household, coded as absent or present;

• the presence of children between five and nine years of age;

• the presence of children between ten and fourteen years of age

• family after-tax income, excluding the woman’s own income (if any);

• education, defined as number of years of schooling.
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3. Models for Polytomous Data
I I will describe three general approaches to modeling polytomous data:

1. modeling the polytomy directly as a set of unordered categories, using
a generalization of the dichotomous logit model;

2. constructing a set of nested dichotomies from the polytomy, fitting an
independent logit or probit model to each dichotomy; and

3. extending the unobserved-variable interpretation of the dichotomous
logit and probit models to ordered polytomies.

c° 2010 by John Fox York SPIDA



Logit and Probit Models 33

3.1 The Polytomous Logit Model
I The dichotomous logit model can be extended to a polytomy by

employing the multivariate-logistic distribution. This approach has the
advantage of treating the categories of the polytomy in a non-arbitrary,
symmetric manner.

I The response variable  can take on any of  qualitative values, which,
for convenience, we number 1 2  (using the numbers only as
category labels).
• For example, in the UK, voters can vote for (1) the Conservatives, (2)

Labour, or (3) the Liberal Democrats (ignoring other parties).

I Let  denote the probability that the th observation falls in the th
category of the response variable; that is,

 ≡ Pr( = ) for  = 1 

I We have  regressors, 1  , on which the  depend.
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• More specifically, suppose that this dependence can be modeled using
the multivariate logistic distribution:

 =
0+11+···+

1 +
P
=2

0+11+···+

for  = 2 

1 = 1−
X
=2



• There is one set of parameters, 0 1  , for each response-
variable category but the first; category 1 functions as a type of
baseline.

• The use of a baseline category is one way of avoiding redundant
parameters because of the restriction that

P
=1  = 1.
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• Some algebraic manipulation of the model produces

log


1
= 0 + 11 + · · · + 

for  = 2 

• The regression coefficients affect the log-odds of membership in
category  versus the baseline category.

• It is also possible to form the log-odds of membership in any pair of
categories  and 0:

log


0
= log

µ




Á
0



¶
= log




− log

0


= (0 − 00) + (1 − 10)1

+ · · · +( − 0)

· The regression coefficients for the logit between any pair of cate-
gories are the differences between corresponding coefficients.
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I Now suppose that the model is specialized to a dichotomous response
variable. Then,  = 2, and

log
2

1
= log

2

1− 2
= 02 + 121 + · · · + 2

• Applied to a dichotomy, the polytomous logit model is identical to the
dichotomous logit model.
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3.1.1 Illustration: British Election Panel Study

I This example is adapted from work by Andersen, Heath, and Sinnott
(2002) on the 2001 British election.

I The central issue addressed in the data analysis is the potential
interaction between respondents’ political knowledge and political
attitudes in determining their vote.

I The response variable, vote, has three categories: Conservative,
Labour, and Liberal Democrat.

I There are several explanatory variables:
• Attitude toward European integration, an 11-point scale, with high

scores representing a negative attitude (so-called “Euro-sceptism”).

• Knowledge of the platforms of the three parties on the issue of
European integration, with integer scores ranging from 0 through 3.
(Labour and the Liberal Democrats supported European integration,
the Conservatives were opposed.)
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• Other variables included in the model primarily as “controls”—age,
gender, perceptions of national and household economic conditions,
and ratings of the three party leaders.
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3.2 Nested Dichotomies
I Perhaps the simplest approach to polytomous data is to fit separate

models to each of a set of dichotomies derived from the polytomy.
• These dichotomies are nested, making the models statistically

independent.

• Logit models fit to a set of nested dichotomies constitute a model for
the polytomy, but are not equivalent to the polytomous logit model
previously described.

I A nested set of  − 1 dichotomies is produced from an -category
polytomy by successive binary partitions of the categories of the
polytomy.
• Two examples for a four-category variable are shown in Figure 4.
· In part (a), the dichotomies are {12, 34}, {1, 2}, and {3, 4}.

· In part (b), the nested dichotomies are {1, 234}, {2, 34}, and {3, 4}.
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Figure 4. Alternative sets of nested dichotomies for a four-category re-
sponse.
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I Because the results of the analysis and their interpretation depend
upon the set of nested dichotomies that is selected, this approach
to polytomous data is reasonable only when a particular choice of
dichotomies is substantively compelling.

I Nested dichotomies are attractive when the categories of the polytomy
represent ordered progress through the stages of a process (called
continuation dichotomies).
• Imagine that the categories in (b) represent adults’ attained level of

education: (1) less than high school; (2) high-school graduate; (3)
some post-secondary; (4) post-secondary degree.

• Since individuals normally progress through these categories in
sequence, the dichotomy {1, 234) represents the completion of
high school; {2, 34} the continuation to post-secondary education,
conditional on high-school graduation; and {3, 4} the completion of a
degree conditional on undertaking a post-secondary education.
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3.3 Ordered Logit and Probit Models
I Imagine that there is a latent variable  that is a linear function of the

 ’s plus a random error:
 =  + 11 + · · · +  + 

• Suppose that instead of dividing the range of  into two regions to
produce a dichotomous response, the range of  is dissected by − 1
boundaries or thesholds into  regions.

• Denoting the thresholds by 1  2  · · ·  −1, and the resulting
response by  , we observe

 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if  ≤ 1
2 if 1   ≤ 2
·
·
·

− 1 if −2   ≤ −1
 if −1  
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• The thresholds, regions, and corresponding values of  and  are
represented graphically in Figure 5.

I Using the model for the latent variable, along with category thresholds,
we can determine the cumulative probability distribution of  :

Pr( ≤ ) = Pr( ≤ )

= Pr( + 11 + · · · +  +  ≤ )

= Pr( ≤  − − 11 − · · ·− )

• If the errors  are independently distributed according to the standard
normal distribution, then we obtain the ordered probit model.

• If the errors follow the similar logistic distribution, then we get the
ordered logit model:

logit[Pr( ≤ )] = log
Pr( ≤ )

Pr(  )
=  − − 11 − · · ·− 
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α1 α2 αm−2 αm−1

ξ
…

1 2 m − 1 m Y

Figure 5. The thresholds 1  2  · · ·  −1 divide the latent continuum
 into  regions, corresponding to the values of the observable variable  .
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• Equivalently,

logit[Pr(  )] = log
Pr(  )

Pr( ≤ )

= (− ) + 11 + · · · + 

for  = 1 2 − 1
• The logits in this model are for cumulative categories — at each point

contrasting categories above category  with category  and below.

• The slopes for each of these regression equations are identical; the
equations differ only in their intercepts.
· The logistic regression surfaces are therefore horizontally parallel to

each other, as illustrated in Figure 6 for  = 4 response categories
and a single .

• For a fixed set of  ’s, any two different cumulative log-odds — say, at
categories  and 0 — differ only by the constant ( − 0).
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· The odds, therefore, are proportional to one-another, and for this
reason, the ordered logit model is called the proportional-odds
model.

I There are ( + 1) + ( − 1) =  +  parameters to estimate in
the proportional-odds model, including the regression coefficients
 1   and the category thresholds 1  −1.
• There is an extra parameter in the regression equations, since each

equation has its own constant, − along with the common constant
.

• A simple solution is to set  = 0, producing
logit[Pr(  )] = − + 11 + · · · + 

I Figure 7 illustrates the proportional-odds model for  = 4 response
categories and a single .
• The conditional distribution of the latent response variable  is shown

for two representative values of the explanatory variable, 1 and 2.
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Figure 6. The proportional-odds model for four response categories and a
single explanatory variable .
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Figure 7. The proportional-odds model for four response categories and a
single explanatory variable .
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3.3.1 Illustration: World Value Survey

I To illustrate the use of the proportional-odds model, I draw on data from
the World Values Survey (WVS) of 1995–97
• Although the WVS collects data in many countries, to provide a

manageable example, I will restrict attention to only four: Australia,
Sweden, Norway, and the United States. The combined sample size
for these four countries is 5381.

I The response variable in the analysis is the answer to the question,
“Do you think that what the government is doing for people in poverty
is about the right amount, too much, or too little.” There are, therefore,
three ordered categories: too little, about right, too much.
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I There are several explanatory variables:
• gender (represented by a dummy variable coded 1 for men and 0 for

women);

• whether or not the respondent belonged to a religion (coded 1 for yes,
0 for no);

• whether or not the respondent had a university degree (coded 1 for
yes and 0 for no);

• age (in years, ranging from 18 to 87); preliminary analysis of the data
suggested a roughly linear age effect;

• country (entered into the model as a set of three dummy regressors,
with Australia as the base-line category).

c° 2010 by John Fox York SPIDA



Logit and Probit Models 51

3.4 Comparison of the Three Approaches
I The three approaches to modeling polytomous data — the polytomous

logit model, logit models for nested dichotomies, and the proportional-
odds model — address different sets of log-odds, corresponding to
different dichotomies constructed from the polytomy.

I Consider, for example, the ordered polytomy {1, 2, 3, 4}:
• Treating category 1 as the baseline, the coefficients of the polytomous

logit model apply directly to the dichotomies {1, 2}, {1, 3}, and {1, 4},
and indirectly to any pair of categories.

• Forming continuation dichotomies (one of several possibilities), the
nested-dichotomies approach models {1, 234}, {2, 34}, and {3, 4}.

• The proportional-odds model applies to the dichotomies {1, 234}, {12,
34}, and {123, 4}, imposing the restriction that only the intercepts of
the three regression equations differ.
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I Which of these models is most appropriate depends partly on the
structure of the data and partly upon our interest in them.
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4. Logit and Probit Models in R
I Dichotomous logit model:

glm(lhs ~ rhs, family=binomial, data,
subset, weights, na.action, contrasts)

where lhs can take several forms (e.g., a numeric variable with values
0 and 1, a logical variable with values TRUE and FALSE, a dichotomous
factor), and rhs gives the terms in the model as in lm().
• The arguments data, subset, na.action, and contrasts are as

in lm().

• The weights argument has a different meaning, representing number
of trials for binomial data (in which case, e.g., lhs can give the
observed proportion of “successes” for each binomial observation).

• For binomial data, the counts of “successes” and “failures” can also be
given as a two-column matrix on the lhs of the model formula.
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I Dichotomous probit model:
glm(lhs ~ rhs,family=binomial(link=probit), data,

subset, weights, na.action, contrasts)
— just like the logit model except for the explicit specification of the
probit “link.”

I Multinomial logit model:
multinom(lhs ~ rhs, data,

subset, weights, na.action, contrasts
using the multinom() function from the nnet package; lhs should be
a factor, and the weights argument can give “case weights.”
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I Proportional-odds model:
polr(lhs ~ rhs, data,

subset, weights, na.action, contrasts)
using the polr() function from the MASS package; lhs should be
an ordered factor or factor, and the weights argument can give “case
weights.”

I Not all of the arguments of these functions are shown: see the relevant
help pages for details — e.g., ?polr.
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