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1. Introduction
I Linear and generalized linear models make strong assumptions about

the structure of data, assumptions that often do not hold in applications.

I Especially in small samples, these models can also be sensitive to
unusual data; in extreme cases, the results might be determined by one
or a very small number of observations.

I It is therefore important to examine data carefully, both prior to and after
fitting a regression model to the data.
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2. Outline
I Data craft: examining and transforming variables.

I Unusual data in linear models: outliers, leverage points, and influential
observations, and what to do about them.

I Non-normality, non-constant error variance, and nonlinearity in linear
models: methods of detection, transformation, and other strategies.

I Diagnostics for unusual data and nonlinearity in generalized linear
models.
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3. Data Craft

3.1 Goals
I To motivate the inspection and exploration of data as a necessary

preliminary to statistical modeling.

I To review (quickly) familiar graphical displays (histograms, boxplots,
scatterplots).

I To introduce displays that may not be familiar (nonparametric density
estimates, quantile-comparison plots, scatterplots matrices, jittered
scatterplots).

I To introduce the ‘family’ of power transformations.

I To show how power transformations can be used to correct common
problems in data analysis, including skewness, nonlinearity, and non-
constant spread.
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I To introduce the logit transformation for proportions (time permitting).
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3.2 A Preliminary Example
I Careful data analysis begins with inspection of the data, and techniques

for examining and transforming data find direct application to the analysis
of data using linear models.

I The data for the four plots in Figure 1, given in the table below, were
cleverly contrived by Anscombe (1973) so that the least-squares
regression line and all other common regression ‘outputs’ are identical
in the four datasets.
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Xa,b,c Ya Yb Yc Xd Yd
10 8.04 9.14 7.46 8 6.58
8 6.95 8.14 6.77 8 5.76

13 7.58 8.74 12.74 8 7.71
9 8.81 8.77 7.11 8 8.84

11 8.33 9.26 7.81 8 8.47
14 9.96 8.10 8.84 8 7.04
6 7.24 6.13 6.08 8 5.25
4 4.26 3.10 5.39 19 12.50

12 10.84 9.13 8.15 8 5.56
7 4.82 7.26 6.42 8 7.91
5 5.68 4.74 5.73 8 6.89
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Figure 1. Anscombe’s “quartet”: Each data set has the same linear least-
-squares regression of Y on X.
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I It is clear, however, that each graph tells a different story about the data:
• In (a), the linear regression line is a reasonable descriptive summary

of the tendency of Y to increase with X.

• In Figure (b), the linear regression fails to capture the clearly curvilinear
relationship between the two variables; we would do much better to fit
a quadratic function here, Y = a + bX + cX2.

• In Figure (c), there is a perfect linear relationship between Y and X

for all but one outlying data point. The least-squares line is pulled
strongly towards the outlier, distorting the relationship between the two
variables for the rest of the data. When we encounter an outlier in real
data we should look for an explanation.

• Finally, in (d), the values of X are invariant (all are equal to 8), with
the exception of one point (which has an X-value of 19); the least-
squares line would be undefined but for this point. We are usually
uncomfortable having the result of a data analysis depend so centrally
on a single influential observation.
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• Only in this fourth dataset is the problem immediately apparent from
inspecting the numbers.
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3.3 Univariate Displays

3.3.1 Histograms

I Figure 2 shows two histograms for the distribution of infant morality rate
per 1000 live births for 193 nations of the world (using 1998 data from
the UN).
• The range of infant mortality is dissected into equal-width class

intervals (called ‘bins’); the number of observations falling into each
interval is counted; and these frequency counts are displayed in a bar
graph.

• Both histograms use bins of width 10 they differ in that the bins in (a)
start at 0, while those in (b) start at -5. The two histograms are more
similar than different but they do give slightly different impressions of
the shape of the distribution.
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Figure 2. Two histograms with the same bin width but different origins for
infant mortality in the United Nations data.
c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 12

I Histograms are very useful graphs, but they suffer from several problems:
• The visual impression of the data conveyed by a histogram can depend

upon the arbitrary origin of the bin system.

• Because the bin system dissects the range of the variable into class
intervals, the histogram is discontinuous (i.e., rough) even if, as in the
case of infant mortality, the variable is continuous.

• The form of the histogram depends upon the arbitrary width of the
bins.

• If we use bins that are narrow enough to capture detail where data are
plentiful — usually near the center of the distribution — then they may
be too narrow to avoid ‘noise’ where data are sparse — usually in the
tails of the distribution.
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3.3.2 Density Estimation

I Nonparametric density estimation addresses the deficiencies of tradi-
tional histograms by averaging and smoothing.

I The kernel density estimator continuously moves a window of fixed width
across the data, calculating a locally weighted average of the number of
observations falling in the window — a kind of running proportion.
• The smoothed plot is scaled so that it encloses an area of one.

• Selecting the window width for the kernel estimator is primarily a
matter of trial and error — we want a value small enough to reveal
detail but large enough to suppress random noise.

• The adaptive kernel estimator is similar, except that the window width
is adjusted so that the window is narrower where data are plentiful and
wider where data are sparse.

I An example is shown in Figure 3.
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Figure 3. Kernel (broken line) and adaptive-kernel (solid line) density esti-
mators for the distribution infant mortality. A “one-dimensional scatterplot”
(or “rug plot”) of the observations is shown at the bottom.
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3.3.3 Quantile-Comparison Plots

I Quantile-comparison plots are useful for comparing an empirical sample
distribution with a theoretical distribution, such as the normal distribution.
A strength of the display is that it does not require the use of arbitrary
bins or windows.

I Let P (x) represent the theoretical cumulative distribution function (CDF)
to which we wish to compare the data; that is, Pr(X ≤ x) = P (x).
• A simple (but flawed) procedure is to calculate the empirical cumulative

distribution function (ECDF) for the observed data, which is simply the
proportion of data below each x:

bP (x) =
n

#
i=1

(Xi ≤ x)

n
• As illustrated in Figure 4, however, the ECDF is a ‘stair-step’ function,

while the CDF is typically smooth, making the comparison difficult.
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Figure 4. (a) Typical ECDF; (b) typical CDF.
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I The quantile-comparison plot avoids this problem by never constructing
the ECDF explicitly:

1. Order the data values from smallest to largest, denoted X(1), X(2), ..., X(n).
The X(i) are called the order statistics of the sample.

2. By convention, the cumulative proportion of the data ‘below’ X(i) is
given by

Pi =
i− 1

2

n
(or a similar formula).

3. Use the inverse of the CDF (the quantile function) to find the value zi
corresponding to the cumulative probability Pi; that is,

zi = P−1
Ã
i− 1

2

n

!
4. Plot the zi as horizontal coordinates against the X(i) as vertical

coordinates.
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• If X is sampled from the distribution P , then X(i) ≈ zi.

• If the distributions are identical except for location, then X(i) ≈ μ + zi.

• If the distributions are identical except for scale, then X(i) ≈ σzi.

• If the distributions differ both in location and scale but have the same
shape, then X(i) ≈ μ + σzi.

5. It is often helpful to place a comparison line on the plot to facilitate the
perception of departures from linearity.

6. We expect some departure from linearity because of sampling variation;
it therefore assists interpretation to display the expected degree of
sampling error in the plot. The standard error of the order statistic X(i)

is

SE(X(i)) =
bσ

p(zi)

r
Pi(1− Pi)

n
where p(z) is the probability-density function corresponding to the CDF
P (z).
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• The values along the fitted line are given by bX(i) = bμ + bσzi.
• An approximate 95 percent confidence ‘envelope’ around the fitted

line is therefore bX(i) ± 2× SE(X(i))

I Figure 5 display normal quantile-comparison plots for several illustrative
distributions:
(a) A sample of n = 100 observations from a normal distribution with

mean μ = 50 and standard deviation σ = 10.

(b) A sample of n = 100 observations from the highly positively skewed
χ2 distribution with two degrees of freedom.

(c) A sample of n = 100 observations from the very-heavy-tailed t

distribution with two degrees of freedom.
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Figure 5. Normal quantile comparison plots for samples of size n = 100
drawn from three distributions.
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I A normal quantile-comparison plot for the infant-mortality data appears
in Figure 6.
• The positive skew of the distribution is readily apparent.

• The multi-modal character of the data, however, is not easily discerned
in this display:

I Quantile-comparison plots highlight the tails of distributions.
• This is important, because the behavior of the tails is often problematic

for standard estimation methods like least-squares, but it is useful to
supplement quantile-comparison plots with other displays.

I Quantile-comparison plots are usually used not to plot a variable directly
but for derived quantities, such as residuals from a regression model.
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Figure 6. Normal quantile-comparison plot for infant mortality.
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3.3.4 Boxplots

I Boxplots (due to John Tukey) present summary information on center,
spread, skewness, and outliers.

I An illustrative boxplot, for the infant-mortality data, appears in Figure 7.

I This plot is constructed according to these conventions:

1. A scale is laid off to accommodate the extremes of the data.

2. The central box is drawn between the hinges, which are simply defined
quartiles, and therefore encompasses the middle half of the data. The
line in the central box represents the median.
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Figure 7. Boxplot of infant mortality.
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3. The following rule is used to identify outliers, which are shown individu-
ally in the boxplot:
• The hinge-spread (or inter-quartile range) is the difference between

the hinges:
H-spread = HU −HL

• The ‘fences’ are located 1.5 hinge-spreads beyond the hinges:
FL = HL − 1.5×H-spread
FU = HU + 1.5×H-spread

Observations beyond fences are identified as outliers. The fences
themselves are not shown in the display. (Points beyond ±3 × H-
spread are extreme outliers.)

• The ‘whisker’ growing from each end of the central box extends either
to the extreme observation on its side of the distribution (as at the low
end of the infant-mortality data) or to the most extreme non-outlying
observation, called the ‘adjacent value’ (as at the high end of the
infant-mortality distribution).
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I The boxplot of the infant-mortality distribution clearly reveals the
skewness of the distribution:
• The lower whisker is shorter than the upper whisker; and there are

outlying observations at the upper end of the distribution, but not at
the lower end.

• The median is closer to the lower hinge than to the upper hinge.

• The apparent multi-modality of the infant-mortality data is not repre-
sented in the boxplot.

I Boxplots are most useful as adjuncts to other displays (e.g., in the
margins of a scatterplot) or for comparing several distributions.
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3.4 Plotting Bivariate Data
I The scatterplot — a direct geometric representation of observations on

two quantitative variables (generically, Y and X)— is the most useful
of all statistical graphs. Scatterplots are familiar, so I will limit this
presentation to a few points (see Figure 8):
• It is convenient to work in a computing environment that permits the

interactive identification of observations in a scatterplot.

• Since relationships between variables in many disciplines are often
weak, scatterplots can be dominated visually by ‘noise.’ It often helps
to enhance the plot with a non-parametric regression of Y on X.

• Scatterplots in which one or both variables are highly skewed are
difficult to examine because the bulk of the data congregate in a small
part of the display. It often helps to ‘correct’ substantial skews prior to
examining the relationship between Y and X.

• Scatterplots in which the variables are discrete are difficult to examine.
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Figure 8. Scatterplot of infant morality by GDP per capita, for the UN data.
The solid line is for a lowess smooth with a span of .5.
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• An extreme instance of this phenomenon is shown in Figure 9, which
plots scores on a ten-item vocabulary test included in NORC’s General
Social Survey against years of education.
· One solution — particularly useful when only X is discrete — is to

focus on the conditional distribution of Y for each value of X.

· Boxplots, for example, can be employed to represent the conditional
distributions.

· Another solution is to separate overlapping points by adding a small
random quantity to the discrete scores. For example, I have added
a uniform random variable on the interval [−0.4,+0.4] to each of
vocabulary and education.
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Figure 9. Vocabulary score by education: (a) original scatterplot; (b) jit-
tered, with the least-squares lines, lowess line (for span = .2), and condi-
tional means.
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I As mentioned, when the explanatory variable is discrete, parallel
boxplots can be used to display the conditional distributions of Y .
• One common case occurs when the explanatory variable is a

qualitative/categorical variable.

• An example is shown in Figure 10, using data collected by Michael
Ornstein (1976) on interlocking directorates among the 248 largest
Canadian firms.
· The response variable in this graph is the number of interlocking

directorships and executive positions maintained by each firm with
others in the group of 248.

· The explanatory variable is the nation in which the corporation is
controlled, coded as Canada, United Kingdom, United States, and
other foreign.

· It is relatively difficult to discern detail in this display: first, because
the conditional distributions of interlocks are positively skewed; and,
second, because there is an association between level and spread.
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Figure 10. Parallel boxplots of number of interlocks by nation of control, for
Ornstein’s interlocking-directorate data.
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3.5 Plotting Multivariate Data
I Because paper and computer screens are two-dimensional, graphical

display of multivariate data is intrinsically difficult.
• Multivariate displays for quantitative data often project the higher-

dimensional ‘point cloud’ of the data onto a two-dimensional space.

• The essential trick of effective multidimensional display is to select
projections that reveal important characteristics of the data.

• In certain circumstances, projections can be selected on the basis of
a statistical model fit to the data or on the basis of explicitly stated
criteria.

I A simple approach to multivariate data, which does not require a
statistical model, is to examine bivariate scatterplots for all pairs of
variables.
• Arraying these plots in a ‘scatterplot matrix’ produces a graphical

analog to the correlation matrix.
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• Figure 11 shows an illustrative scatterplot matrix, for data from
Duncan (1961) on the prestige, education, and income levels of 45
U.S. occupations.

• It is important to understand an essential limitation of the scatterplot
matrix as a device for analyzing multivariate data:
· By projecting the multidimensional point cloud onto pairs of axes, the

plot focuses on the marginal relationships between the correspond-
ing pairs of variables.

· The object of data analysis for several variables is typically to
investigate partial relationships, not marginal associations

· Y can be related marginally to a particular X even when there is no
partial relationship between the two variables controlling for other
X ’s.

· It is also possible for there to be a partial association between Y and
an X but no marginal association.
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Figure 11. Scatterplot matrix for prestige, income, and education in Dun-
can’s occupational prestige data.
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· Furthermore, if the X ’s themselves are nonlinearly related, then the
marginal relationship between Y and a specific X can be nonlinear
even when their partial relationship is linear.

• Despite this intrinsic limitation, scatterplot matrices often uncover
interesting features of the data, and this is indeed the case here,
where the display reveals three unusual observations: Ministers,
railroad conductors, and railroad engineers.

I Information about a categorical third variable may be entered on a
bivariate scatterplot by coding the plotting symbols. The most effective
codes use different colors to represent categories, but degrees of fill,
distinguishable shapes, and distinguishable letters can also be effective.
(See, e.g., Figure 12, which uses data from Caroline Davis (1990) on
weight and reported weight of regular exercisers.)
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Figure 12. Measured by reported weight for 183 men (M) and women (F)
engaged in regular exercise.

c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 38

I Another useful multivariate display, directly applicable only to three
variables at a time, is the three-dimensional scatterplot.
• This display is an illusion produced by modern statistical software,

since the graph really represents a projection of a three-dimensional
scatterplot onto a two-dimensional computer screen.

• Nevertheless, motion (e.g., rotation) and the ability to interact with the
display — sometimes combined with the effective use of perspective,
color, depth-cueing, fitted surfaces, and other visual devices — can
produce a vivid impression of directly examining a three-dimensional
space.
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3.6 Transformations: The Family of Powers and Roots
I ‘Classical’ statistical models make strong assumptions about the

structure of data, assumptions which often fail to hold in practice.
• One solution is to abandon classical methods.

• Another solution is to transform the data so that they conform more
closely to the assumptions.

• As well, transformations can often assist in the examination of data in
the absence of a statistical model.

I A particularly useful group of transformations is the ‘family’ of powers
and roots:

X → Xp

• If p is negative, then the transformation is an inverse power: X−1 =
1/X, and X−2 = 1/X2.

• If p is a fraction, then the transformation represents a root: X1/3 =
3
√
X

and X−1/2 = 1/
√
X.
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I It is sometimes convenient to define the family of power transformations
in a slightly more complex manner (called the Box-Cox family):

X → X(p) ≡ Xp − 1
p

I Since X(p) is a linear function of Xp, the two transformations have the
same essential effect on the data, but, as is apparent in Figure 13, X(p)

reveals the essential unity of the family of powers and roots:
• Dividing by p preserves the direction of X, which otherwise would be

reversed when p is negative:
X X−1 X−1−1

−1
1 1 0

2 1/2 1/2

3 1/3 2/3

4 1/4 3/4

• The transformations X(p) are ‘matched’ above X = 1 both in level and
slope.
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Figure 13. The Box-Cox familily of modified power transformations,
X(p) = (Xp − 1)/p, for values of p = −1, 0, 1, 2, 3. When p = 0,
X(p) = loge X.
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• The power transformation X0 is useless, but the very useful log
transformation is a kind of ‘zeroth’ power:

lim
p→0

Xp − 1
p

= loge X

where e ≈ 2.718 is the base of the natural logarithms. Thus, we will
take X(0) ≡ log(X).
· It is generally more convenient to use logs to the base 10 or base 2,

which are more easily interpreted than logs to the base e.

· Changing bases is equivalent to multiplying by a constant.
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I Review of logs:
• logs are exponents: logb x = y (“the log of x to the base b is y”) means

that by = x.

• Some examples:
log10 100 = 2 ⇐⇒ 102 = 100

log10 0.01 = −2 ⇐⇒ 10−2 = 1
102
= 0.01

log10 10 = 1 ⇐⇒ 101 = 10

log2 8 = 3 ⇐⇒ 23 = 8

log2
¡
1
8

¢
= −3 ⇐⇒ 2−3 = 1

23
= 1

8

logb 1 = 0 ⇐⇒ b0 = 1

I Descending the ‘ladder’ of powers and roots from p = 1 (i.e., no
transformation) towards X(−1) compresses the large values of X and
spreads out the small ones
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I Ascending the ladder of powers and roots towards X(2) has the opposite
effect.

− 1
X

log2X X X2 X3

−1 0 1 1 1
1
2

{ 1 { } 1 } 3 } 7
−1/2 1 2 4 8

1
6

{ 0.59 { } 1 } 5 } 19
−1/3 1.59 3 9 27

1
12

{ 0.41 { } 1 } 7 } 37
−1/4 2 4 16 64

I Power transformations are sensible only when all of the values of X are
positive.
• First of all, some of the transformations, such as log and square root,

are undefined for negative or zero values.
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• Second, the power transformations are not monotone when there are
both positive and negative values in the data:

X X2

−2 4

−1 1

0 0

1 1

2 4

• We can add a positive constant (called a ‘start’) to each data value to
make all of the values positive: X → (X + s)p:

X (X + 3)2

−2 1

−1 4

0 9

1 16

2 25
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• Alternatively, we can use the Yeo-Johnson family of modified power
transformations (Yeo and Johnson, 2000), which are defined as follows
for power p:

X [p] =

⎧⎪⎪⎨⎪⎪⎩
(X + 1)p − 1

p
for X ≥ 0

(−X + 1)2−p − 1
p

for X < 0
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I Power transformations are effective only when the ratio of the biggest
data values to the smallest ones is sufficiently large; if this ratio is
close to 1, then power transformations are nearly linear; in the following
example, 1995/1991 = 1.002 ≈ 1:

X log10X

1991 3.2991

1 { } 0.0002
1992 3.2993

1 { } 0.0002
1993 3.2995

1 { } 0.0002
1994 3.2997

1 { } 0.0002
1995 3.2999

c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 48

• Using a negative start produces the desired effect:
X log10(X − 1990)
1991 0

1{ }0.301
1992 0.301

1{ }0.176
1993 0.477

1{ }0.125
1994 0.602

1{ }0.097
1995 0.699

I Using reasonable starts, if necessary, an adequate power transformation
can usually be found in the range −2 ≤ p ≤ 3.
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3.6.1 Transforming Skewness

I Power transformations can make a skewed distribution more symmetric.
But why should we bother?
• Highly skewed distributions are difficult to examine.

• Apparently outlying values in the direction of the skew are brought in
towards the main body of the data.

• Unusual values in the direction opposite to the skew can be hidden
prior to transforming the data.

• Statistical methods such as least-squares regression summarize
distributions using means. The mean of a skewed distribution is not a
good summary of its center.
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I How a power transformation can eliminate a positive skew:
X log10X

1 0

9 { } 1
10 1

90 { } 1
100 2

900 { } 1
1000 3

• Descending the ladder of powers to logX makes the distribution more
symmetric by pulling in the right tail.

• Ascending the ladder of powers (towards X2 and X3) can ‘correct’ a
negative skew.

I For infant mortality in the UN data, the log transformation works well, as
shown in Figure 14.

c° 2009 by John Fox FIOCRUZ Brazil



Regression Diagnostics 51

−X
−1

− X
−1 2 log(X) X

1 2
X

Figure 14. Boxplots for various transformations down the ladder of powers
and roots for infant mortality in the UN datqa.
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I If we have a choice between transformations that perform roughly
equally well, we may prefer one transformation to another because of
interpretability:
• The log transformation has a convenient multiplicative interpretation

(e.g. adding 1 to log2X doubles X; adding 1 to log10X multiples X by
10.

• In certain contexts, other transformations may have specific substan-
tive meanings:
· The inverse of time required to travel a fixed distance (e.g., hours for

1 km) is speed (km per hour).

· The inverse of response latency (e.g., in a psychophysical experi-
ment, in milliseconds) is response frequency (responses per 1000
seconds).
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Figure 15. Adaptive-kernel density estimate for log-transformed infant mor-
tality.
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· The square root of a measure of area (say, in m2) is a linear measure
of size (in meters).

· The cube of a linear measure (say in cm) can be interpreted as a
volume (cm3).

I One can also label an axis with the original units, as in Figure 15.
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3.6.2 Transforming Nonlinearity

I Power transformations can also be used to make many nonlinear
relationships more nearly linear. Again, why bother?
• Linear relationships — expressible in the form bY = a + bX — are

particularly simple.

• When there are several explanatory variables, the alternative of
nonparametric regression may not be feasible or may be difficult to
visualize.

• There is a simple and elegant statistical theory for linear models.

• There are certain technical advantages to having linear relationships
among the explanatory variables in a regression analysis.
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I The following simple example suggests how a power transformation can
serve to straighten a nonlinear relationship; here, Y = 1

5
X2 (with no

residual):
X Y

1 0.2
2 0.8
3 1.8
4 3.2
5 5.0

• These ‘data’ are graphed in part (a) of Figure 16.

• We could replace Y by Y 0 =
√
Y , in which case Y 0 =

q
1
5
X [see (b)].

• We could replace X by X 0 = X2, in which case Y = 1
5
X 0 [see (c)].

I A power transformation works here because the relationship between Y

and X is both monotone and simple. In Figure 17:
• the curve in (a) is simple and monotone;
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Figure 16. Transformating a nonlinear relationship (a) to linearity, (b) or
(c).
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(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 17. (a) A simple monotone relationship. (b) A monotone relation-
ship that is not simple. (c) A simple nonmonotone relationship.
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• in (b) monotone, but not simple;

• in (c) simple but not monotone.
· In (c), we could fit a quadratic model, bY = a+ b1X + b2X

2.

I Figure 18 introduces Mosteller and Tukey’s ‘bulging rule’ for selecting a
transformation.
• For example, if the ‘bulge’ points down and to the right, we need to

transform Y down the ladder of powers or X up (or both).

• Figure 19 shows the relationship between prestige and average
income for 102 Canadian occupations around 1970.
· The relationship between prestige and income is clearly monotone

and nonlinear.

· Since the bulge points up and to the left, we can try transforming
prestige up the ladder of powers or income down.

· The cube-root transformation of income works reasonably well.
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X up:

X2,  X3

X down:

log(X),  X

Y up:

Y
2

Y
3

Y down:

Y

log(Y)

Figure 18. Mosteller and Tukey’s bulging rule for selecting linearizing trans-
formations.
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Figure 19. Transformating the relationship between prestige and income to
(near) linearity: (left) original scatterplot; (right) with income transformed.
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• A more extreme example appears in Figure 20, which shows the
relationship between the infant-mortality rate and GDP per capita in
the UN data.
· The skewness of infant mortality and income makes the scatterplot

difficult to interpret; the nonparametric regression reveals a nonlinear
but monotone relationship.

· The bulging rule suggests that infant mortality or income should be
transformed down the ladder of powers and roots.
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Figure 20. Transforming the relationship between infant mortality and GDP
per capita.
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· Transforming both variables by taking logs makes the relationship
nearly linear; the least-squares fit is:

\log10 Infant mortality = 3.06− 0.493× log10GDP
· Because both variables are expressed on log scales to the same

base, the slope of this relationship has a simple interpretation:
A one-percent increase in per-capita income is associated on
average with an approximate half-percent decline in the infant-
mortality rate.
· Economists call this type of number an ‘elasticity.’
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3.6.3 Transforming Non-Constant Spread

I When a variable has very different degrees of variation in different
groups, it becomes difficult to examine the data and to compare
differences in level across the groups.
• Recall Ornstein’s Canadian interlocking-directorate data, examining

the relationship between number of interlocks and nation of control.

I Differences in spread are often systematically related to differences in
level.
• Using the median and hinge-spread (inter-quartile range) as indices of

level and spread, respectively, the following table shows that there is
indeed an association, if an imperfect one, between spread and level
for Ornstein’s data:
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Nation of Control Lower Hinge Median Upper Hinge Hinge Spread
Other 3 14.5 23 20
Canada 5 12.0 29 24
United Kingdom 3 8.0 13 10
United States 1 5.0 12 11

I Tukey suggests graphing the log hinge-spread against the log median,
as shown in Figure 21.
• Because some firms maintained zero interlocks, I used a start of 1.

• The slope of the linear ‘trend,’ if any, in the spread-level plot can be
used to suggest a spread-stabilizing power transformation of the data:
· Express the linear fit as

log-spread ≈ a + b log-level

· Then the corresponding spread-stabilizing transformation uses the
power p = 1− b.
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Figure 21. Spread-level plot for Ornstein’s interlocking-directorate data.
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• For Ornstein’s data, the slope of the least-squares line is b = 0.85,
suggesting the power transformation, p = 1 − 0.85 = 0.15 ≈ 0 (i.e.,
log). See the Figure 22, using logs to the base 2 (and plotting on a
log-scaled axis).

I The problems of unequal spread and skewness commonly occur
together, because they often have a common origin:
• Here, the data represent frequency counts (number of interlocks); the

impossibility of obtaining a negative count tends to produce positive
skewness, together with a tendency for larger levels to be associated
with larger spreads.
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Figure 22. Ornstein’s interlocking-directorate data, log-transforming inter-
locks (with a start of 1).
c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 70

3.7 Transforming Proportions
I Power transformations are often not helpful for proportions, since these

quantities are bounded below by 0 and above by 1.
• If the data values do not approach these two boundaries, then

proportions can be handled much like other sorts of data.

• Percents and many sorts of rates are simply rescaled proportions.

• It is common to encounter ‘disguised’ proportions, such as the number
of questions correct on an exam of fixed length.

I An example, drawn from the Canadian occupational prestige data, is
shown in the stem-and-leaf display (a type of histogram) in Figure 23.
The distribution is for the percentage of women among the incumbents
of each of 102 occupations.
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Unit: 1    Lines/stem: 2
     1|2 <--> 12

depth
 32  0|00000000000000111111222233334444
 44  0|555566777899                    
  8) 1|01111333                        
 50  1|5557779                         
 43  2|1344                            
 39  2|57                              
 37  3|01334                           
 32  3|99                              
 30  4|                                
 30  4|678                             
 27  5|224                             
 24  5|67                              
 22  6|3                               
 21  6|789                             
 18  7|024                             
 15  7|5667                            
 11  8|233                             
  8  8|                                
  8  9|012                             
  5  9|56667                           

Figure 23. Stem-and-leaf display of percent women in the Canadian occu-
pational prestige data. Notice the “stacking up” near the boundaries of 0
and 100.
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I Several transformations are commonly employed for proportions; the
most important is the logit transformation:

P → logit(P ) = loge
P

1− P

• The logit transformation is the log of the ‘odds,’ P/(1− P ).

• The ‘trick’ of the logit transformation is to remove the upper and lower
boundaries of the scale, spreading out the tails of the distribution and
making the resulting quantities symmetric about 0; for example:
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P P
1−P logit

.05 1/19 −2.94

.1 1/9 −2.20

.3 3/7 −0.85

.5 1 0

.7 7/3 0.85

.9 9/1 2.20

.95 19/1 2.94
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• The logit transformation is graphed in Figure 24. Note that the
transformation is nearly linear in its center, between about P = .2 and
P = .8.

• The logit transformations cannot be applied to proportions of exactly 0
or 1.
· If we have access to the original counts, we can define adjusted

proportions

P 0 =
F + 1

2

N + 1
in place of P .
· Here, F is the frequency count in the focal category (e.g., number

of women) and N is the total count (total number of occupational
incumbents, women plus men).
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Figure 24. The logit transformation of a proportion.
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· If the original counts are not available, then we can remap the
proportions to an interval that excludes 0 and 1.
· For example, P 0 = .005+ .99×P remaps proportions to the interval

[.005, .995].

• The distribution of logit(P 0women) for the Canadian occupational prestige
data appears in Figure 25.

• We will encounter logits again when we talk about generalized linear
models for categorical data.
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Unit: 0.1    Lines/stem: 2
     1|2 <--> 1.2

depth
  5  -4|77777      
  8  -3|444        
 16  -3|55667888   
 21  -2|01124      
 31  -2|5567888999 
 39  -1|01112344   
 48  -1|556779999  
 10) -0|0111333444 
 44  -0|668889     
 38   0|01233355889
 27   0|00122577889
 16   1|01111      
 11   1|556        
  8   2|23         
  6   2|5          
  5   3|00014      

Figure 25. Logit-transformed percent women.
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3.8 Summary: Data Craft
I Statistical graphs are central to effective data analysis, both in the early

stages of an investigation and in statistical modeling.

I There are many useful univariate displays, including the traditional
histogram.
• Nonparametric density estimation may be employed to smooth a

histogram.

• Quantile comparison plots are useful for comparing data with a
theoretical probability distribution.

• Boxplots summarize some of the most important characteristics of a
distribution, including center, spread, skewness, and the presence of
outliers.
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I The bivariate scatterplot is a natural graphical display of the relationship
between two quantitative variables.
• Interpretation of a scatterplot can often be assisted by graphing

a nonparametric regression, which summarizes the relationship
between the two variables.

• Scatterplots of the relationship between discrete variables can be
enhanced by randomly jittering the data.

I Parallel boxplots can be employed to display the relationship between a
quantitative response variable and a discrete explanatory variable.

I Visualizing multivariate data is intrinsically difficult because we cannot
directly examine higher-dimensional scatterplots.
• Effective displays project the higher-dimensional point cloud onto two

or three dimensions.

• These displays include the scatterplot matrix and the dynamic three-
dimensional scatterplot.
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I Transformations can often facilitate the examination and modeling of
data.

I The powers and roots are a particularly useful family of transformations:
X → Xp.
• We employ the log transformation in place of X0.

I Power transformations preserve the order of the data only when all
values are positive, and are effective only when the ratio of largest to
smallest data values is itself large.
• When these conditions do not hold, we can impose them by adding a

positive or negative start to all of the data values.

I Descending the ladder of powers (e.g., to logX) tends to correct a
positive skew; ascending the ladder of powers (e.g., to X2) tends to
correct a negative skew.

I Simple monotone nonlinearity can often be corrected by a power
transformation of X, of Y , or of both variables.
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• Mosteller and Tukey’s ‘bulging rule’ assists in the selection of a
transformation.

I When there is a positive association between the level of a variable in
different groups and its spread, the spreads can be made more constant
by descending the ladder of powers. A negative association between
level and spread is less common, but can be corrected by ascending the
ladder of powers.

I Power transformations are ineffective for proportions P that push the
boundaries of 0 and 1, and for other variables (e.g., percents, rates,
disguised proportions) that are bounded both below and above.
• The logit transformation, P → log[P/(1 − P )] often works well for

proportions.
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4. Unusual and Influential Data in
Least-Squares Regression
I Linear statistical models make strong assumptions about the structure

of data, which often do not hold in applications.

I The method of least-squares is very sensitive to the structure of the data,
and can be markedly influenced by one or a few unusual observations.

I We could abandon linear models and least-squares estimation in favor
of nonparametric regression and robust estimation.

I Alternatively, we can adapt and extend methods for examining and
transforming data to diagnose problems with a linear model, and to
suggest solutions.
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4.1 Goals
I To distinguish among regression outliers, high-leverage observations,

and influential observations.

I To show how outlyingness, leverage, and influence can be measured.

I To introduce added-variable (‘partial-regression’) plots as a means of
displaying leverage and influence on particular coefficients.
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4.2 Outliers, Leverage, and Influence
I Unusual data are problematic in linear models fit by least squares

because they can unduly influence the results of the analysis, and
because their presence may be a signal that the model fails to capture
important characteristics of the data.

I Some central distinctions are illustrated in Figure 26 for the simple
regression model Y = α + βX + ε.
• In simple regression, an outlier is an observation whose response-

variable value is conditionally unusual given the value of the explana-
tory variable.

• In contrast, a univariate outlier is a value of Y or X that is uncon-
ditionally unusual; such a value may or may not be a regression
outlier.
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(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 26. Unusual data in regression: (a) a low-leverage and hence un-
influential outlier; (b) a high-leverage and hence influential outlier; (c) a
high-leverage in-line observation. In each case, the solid line is the least-
-squares line for all of the data; the broken line is the least-squares line
with the unusual observation omitted.
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• Regression outliers appear in (a) and (b).
· In (a), the outlying observation has an X-value that is at the center

of the X distribution; deleting the outlier has little impact on the
least-squares fit.

· In (b), the outlier has an unusual X-value; its deletion markedly
affects both the slope and the intercept. Because of its unusual X-
value, the outlying last observation in (b) exerts strong leverage on
the regression coefficients, while the outlying middle observation in
(a) is at a low-leverage point. The combination of high leverage with
a regression outlier produces substantial influence on the regression
coefficients.

· In (c), the last observation has no influence on the regression
coefficients even though it is a high-leverage point, because this
observation is in line with the rest of the data.
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• The following heuristic formula helps to distinguish among the three
concepts of influence, leverage and discrepancy (‘outlyingness’):

Influence on Coefficients = Leverage × Discrepancy

I A simple example with real data from Davis (1990) appears in Figure
27. The data record the measured and reported weight of 183 male and
female subjects who engage in programs of regular physical exercise.
Davis’s data can be treated in two ways:

1. We could regress reported weight (RW ) on measured weight (MW ), a
dummy variable for sex (F , coded 1 for women and 0 for men), and an
interaction regressor (formed as the product MW × F ):dRW = 1.36 + 0.990MW + 40.0F − 0.725(MW × F )

(3.28) (0.043) (3.9) (0.056)

R2 = 0.89 SE = 4.66

c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 88

M

FF

M

F

MMMM
M

M

F
F

F
F

F

M

F

M

F

M

F
M
M

F

F

FF

F

M

FMM

F

FM

F

M

M

M

F

M

F

MM

FF

F

M

F

M

M

MF

M
M

M

MM
M F

M

F
FF

F

M

F
M

FF
F
F

F
MM

F
M
F FF

M
M

F
FF

M

F

M

M

M

F

M

FF
F

M

FF

F

FF
F

F

F

M

M

F

M

F

F

M

M

M

M

M
M
F

FF

F

F

F

F

M

F
F

M

F

F

M
M

M

FFF

F

FFF

F

M

F

FFF

M

M

F
F
FF

FMFF
F

M

F

M

MM
MM

M

M

M

F

M

FFF

M

F

M
M

F
F

F

M

M

M

M

40 60 80 100 120 140 160

4
0

6
0

8
0

1
0

0
1

2
0

(a)

Measured Weight (kg)

R
e

p
o

rt
e

d
 W

e
ig

h
t (

kg
)

Female

Male

M

FF

M
F

MM
MMM
M

F

F

F
F

F

M

F

M

F

M

F MM
FF
F
F

F

M

FM
M

F

FM
F

M

M

M
F

M

F

M
M

FF

F
M

F

M

M

MF
MM

M
MM M

F

M

F FF
F

M

F M
FF

F F
F

MM
F

MF
FF MM

F FF
M

F

M

M

M

F

M

FFF
M

FF

F
FF

F
F

F

M
M

F
M

F

F

M

M

M
M

M
MF

FF
F

F

F

F

M

F
F

M

F
F

MM

M

FFF
F

FFF
F

M

F
FFF

M

M
F

F FF
FMF

FF

M

F

M

MM
M
M

M
M

M

F
M

FFF

M

F

MM

F
F

F
M

M
M

M

40 60 80 100 120

4
0

6
0

8
0

1
2

0
1

6
0

(b)

Reported Weight (kg)

M
e

a
su

re
d

 W
e

ig
h

t (
kg

)

Figure 27. (a) Regressing reported weight on measured weight, sex, and
their interaction; (b) regressing measured weight on reported weight, sex,
and their interaction.
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• Were these results taken seriously, we would conclude that men are
unbiased reporters of their weights (because A≈0 and B1≈1), while
women tend to over-report their weights if they are relatively light and
under-report if they are relatively heavy.

• The figure makes it clear that the differential results for women and
mean are due to one erroneous data point.

• Correcting the data produces the regressiondRW = 1.36 + 0.990MW + 1.98F − 0.0567(MW × F )

(1.58) (0.021) (2.45) (0.0385)

R2 = 0.97 SE = 2.24
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2. We could regress measured weight on reported weight, sex, and their
interaction:

[MW = 1.79 + 0.969RW + 2.07F − 0.00953(MW × F )

(5.92) (0.076) (9.30) (0.147)

R2 = 0.70 SE = 8.45

• The outlier does not have much impact on the regression coefficients
because the value of RW for the outlying observation is near RW for
women.

• There is, however, a marked effect on the multiple correlation and
standard error: For the corrected data, R2 = 0.97 and SE = 2.25.
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4.3 Assessing Leverage: Hat-Values
I The hat-value hi is a common measure of leverage in regression. These

values are so named because it is possible to express the fitted valuesbYj (‘Y -hat’) in terms of the observed values Yi:bYj = h1jY1 + h2jY2 + · · · + hjjYj + · · · + hnjYn =

nX
i=1

hijYi

• Thus, the weight hij captures the contribution of observation Yi to
the fitted value bYj: If hij is large, then the ith observation can have a
substantial impact on the jth fitted value.

I Properties of the hat-values:
• hii =

Pn
j=1 h

2
ij, and so the hat-value hi ≡ hii summarizes the potential

influence (the leverage) of Yi on all of the fitted values.

• 1/n ≤ hi ≤ 1
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• The average hat-value is h = (k + 1)/n.

• In simple-regression analysis, the hat-values measure distance from
the mean of X:

hi =
1

n
+

(Xi −X)2Pn
j=1(Xj −X)2

• In multiple regression, hi measures distance from the centroid (point of
means) of the X ’s, taking into account the correlational and variational
structure of the X ’s, as illustrated for k = 2 in Figure 28. Multivariate
outliers in the X-space are thus high-leverage observations. The
response-variable values are not at all involved in determining
leverage.

I For Davis’s regression of reported weight on measured weight, the
largest hat-value by far belongs to the 12th subject, whose measured
weight was wrongly recorded as 166 kg.: h12 = 0.714. This quantity is
many times the average hat-value, h = (3 + 1)/183 = 0.0219.
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X1

X2

X1

X2

Figure 28. Contours of constant leverage in multiple regression with two
explanatory variables, X1 and X2. The two observations marked with solid
black dots have equal hat-values.
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I Recall Duncan’s data on the prestige, education, and income of 45 U.S.
occupations in 1950. Here is the regression of prestige on income and
education:

\Prestige = −6.06 + 0.599× Income + 0.546× Education
(4.27) (0.120) (0.098)

• An index plot of hat-values for the observations in Duncan’s regression
is shown in Figure 29 (a), with a scatterplot for the explanatory
variables in Figure 29 (b).
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Figure 29. Duncan’s occupational prestige regression: (a) hat-values; (b)
scatterplot for education and income, showing contours of constant lever-
age at 2× h and 3× h.
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4.4 Detecting Outliers: Studentized Residuals
I Discrepant observations usually have large residuals, but even if the

errors εi have equal variances (as assumed in the general linear model),
the residuals Ei do not:

V (Ei) = σ2ε(1− hi)

• High-leverage observations tend to have small residuals, because
these observations can coerce the regression surface to be close to
them.

I Although we can form a standardized residual by calculating

E0i =
Ei

SE

√
1− hi

this measure is slightly inconvenient because its numerator and
denominator are not independent, preventing E0i from following a
t-distribution: When |Ei| is large, SE =

pP
E2i /(n− k − 1), which

contains E2i , tends to be large as well.
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I Suppose that we refit the model deleting the ith observation, obtaining
an estimate SE(−i) of σε that is based on the remaining n−1 observations.
• Then the studentized residual

E∗i =
Ei

SE(−i)
√
1− hi

has independent numerator and denominator, and follows a t-
distribution with n− k − 2 degrees of freedom.

• An equivalent procedure for finding the studentized residuals employs
a ‘mean-shift’ outlier model

Y = α + β1X1 + · · · + βkXk + γD + ε

where D is a dummy regressor set to one for observation i and zero
for all other observations:

D =

½
1 for obs. i
0 otherwise
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• Thus
E(Yi) = α + β1Xi1 + · · · + βkXik + γ

E(Yj) = α + β1Xj1 + · · · + βkXjk for j 6= i

· It would be natural to specify this model if, before examining the
data, we suspected that observation i differed from the others.

· Then to test H0: γ = 0, we can calculate t0 = bγ/SE(bγ). This test
statistic is distributed as tn−k−2 under H0, and is the studentized
residual E∗i .
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4.4.1 Testing for Outliers

I In most applications we want to look for any outliers that may occur in
the data; we can in effect refit the mean-shift model n times, producing
studentized residuals E∗1 , E

∗
2 , ..., E

∗
n. (It is not literally necessary to

perform n auxiliary regressions.)
• Usually, our interest then focuses on the largest absolute E∗i , denoted
E∗max.

• Because we have picked the biggest of n test statistics, it is not
legitimate simply to use tn−k−2 to find a p-value for E∗max.

I One solution to this problem of simultaneous inference is to perform a
Bonferroni adjustment to the p-value for the largest absolute E∗i : Let
p0 = Pr( tn−k−2 > E∗max).
• Then the Bonferroni p-value for testing the statistical significance of
E∗max is p = 2np0.
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• Note that a much larger E∗max is required for a statistically significant
result than would be the case for an ordinary individual t-test.

I Another approach is to construct a quantile-comparison plot for the
studentized residuals, plotting against either the t or normal distribution.

I In Davis’s regression of reported weight on measured weight, the
largest studentized residual by far belongs to the incorrectly coded 12th
observation, with E∗12 = −24.3.
• Here, n− k − 2 = 183− 3− 2 = 178, and Pr(t178 > 24.3) ≈ 10−58.
• The Bonferroni p-value for the outlier test is p ≈ 2 × 183 × 10−58 =
4× 10−56, an unambiguous result.

I For Duncan’s occupational prestige regression, the largest studentized
residual belongs to ministers, with E∗minister = 3.135.
• The Bonferroni p-value is 2× 45× Pr(t45−2−2 > 3.135) = .143.
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4.5 Measuring Influence
I Influence on the regression coefficients combines leverage and discrep-

ancy.

I The most direct measure of influence simply expresses the impact on
each coefficient of deleting each observation in turn:

dfbetaij = Bj −Bj(−i) for i = 1, ..., n and j = 0, 1, ..., k

where the Bj are the least-squares coefficients calculated for all of the
data, and the Bj(−i) are the least-squares coefficients calculated with
the ith observation omitted. (So as not to complicate the notation here, I
denote the least-squares intercept A as B0.)

I One problem associated with using the dfbetaij is their large number —
n(k + 1).
• It is useful to have a single summary index of the influence of each

observation on the least-squares fit.
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• Cook (1977) has proposed measuring the ‘distance’ between the
Bj and the corresponding Bj(−i) by calculating the F -statistic for the
‘hypothesis’ that βj = Bj(−i), for j = 0, 1, ..., k.
· This statistic is recalculated for each observation i = 1, ..., n.

· The resulting values should not literally be interpreted as F -tests,
but rather as a distance measure that does not depend upon the
scales of the X ’s.

· Cook’s statistic can be written (and simply calculated) as

Di =
E02i
k + 1

× hi

1− hi
· In effect, the first term in the formula for Cook’s D is a measure of

discrepancy, and the second is a measure of leverage.

· We look for values of Di that are substantially larger than the rest.
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I Because all of the deletion statistics depend on the hat-values and
residuals, a graphical alternative is to plot the E∗i against the hi and to
look for observations for which both are big. A slightly more sophisticated
version of this plot that incorporates Cook’s D is given below.

I For Davis’s regression of reported weight on measured weight, Cook’s
D points to the obviously discrepant 12th observation:

Cook’s D12 = 85.9 (next largest, D21 = 0.065)

I For Duncan’s regression, the largest Cook’s D is for ministers, D6 =

0.566.
• Figure 30 displays a plot of studentized residuals versus hat-values,

with the areas of the plotted circles proportional to values of Cook’s
D. The lines on the plot are at E∗ = ±2 (on the vertical axis), and at
h = 2h and 3h (on the horizontal axis).

• Four observations that exceed these cutoffs are identified on the plot.
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• Notice that reporters have a relatively large residual but are at a
low-leverage point, while railroad engineers have high leverage but a
small studentized residual.

I In developing the concept of influence in regression, I have focused on
changes in regression coefficients. Other regression outputs, such as
the coefficient sampling variances and covariances, are also subject to
influence.
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Figure 30. Influence plot for Duncan’s occupational prestige regression.
The areas of the circles are proportional to Cook’s distance.
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4.6 Numerical Cutoffs for Diagnostic Statistics
I I have refrained from suggesting specific numerical criteria for identifying

noteworthy observations on the basis of measures of leverage and
influence: I believe that it is generally more effective to examine the
distributions of these quantities directly to locate unusual values.
• For studentized residuals, outlier-testing provides a numerical cutoff,

but even this is no substitute for graphical examination of the residuals.

I Nevertheless, numerical cutoffs can be of some use, as long as they are
not given too much weight, and especially when they are employed to
enhance graphical displays.
• A line can be drawn on a graph at the value of a numerical cutoff, and

observations that exceed the cutoff can be identified individually.

I Cutoffs for a diagnostic statistic may be derived from statistical theory,
or they may result from examination of the sample distribution of the
statistic.
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I Cutoffs may be absolute, or they may be adjusted for sample size.
• For some diagnostic statistics, such as measures of influence,

absolute cutoffs are unlikely to identify noteworthy observations in
large samples.

• In part, this characteristic reflects the ability of large samples to absorb
discrepant data without changing the results substantially, but it is
still often of interest to identify relatively influential points, even if no
observation has strong absolute influence.

• The cutoffs presented below are derived from statistical theory:

4.6.1 Hat-Values

I Belsley, Kuh, and Welsch suggest that hat-values exceeding about twice
the average h = (k + 1)/n are noteworthy.

I In small samples, using 2 × h tends to nominate too many points for
examination, and 3× h can be used instead.
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4.6.2 Studentized Residuals

I Beyond the issue of ‘statistical significance,’ it sometimes helps to call
attention to residuals that are relatively large.

I Under ideal conditions, about five percent of studentized residuals are
outside the range |E∗i | ≤ 2. It is therefore reasonable to draw attention
to observations outside this range.

4.6.3 Measures of Influence

I Many cutoffs have been suggested for different measures of influence,
including the following size-adjusted cutoff for Cook’s D, due to
Chatterjee and Hadi:

Di >
4

n− k − 1
I Absolute cutoffs for D, such as Di > 1, risk missing relatively influential

data.
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4.7 Joint Influence: Added-Variable Plots
I As illustrated in Figure 31, subsets of observations can be jointly

influential or can offset each other’s influence.
• Influential subsets or multiple outliers can often be identified by

applying single-observation diagnostics, such as Cook’s D and
studentized residuals, sequentially.

• It can be important to refit the model after deleting each point, because
the presence of a single influential value can dramatically affect the fit
at other points, but the sequential approach is not always successful.

I Although it is possible to generalize deletion statistics to subsets of
several points, the very large number of subsets usually renders this
approach impractical.

I An attractive alternative is to employ graphical methods, and a partic-
ularly useful influence graph is the added-variable plot (also called a
partial-regression plot or an partial-regression leverage plot).
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(a)
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Figure 31. Jointly influential observations: (a) a pair of jointly influential
points; (b) a widely separated jointly infuential pair; (c) two points that
offset each other’s influence. In each case the heavier solid line is the
least-squares line for all of the data, the broken line deletes the black point,
and the lighter solid line deletes both the gray and the black points.
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• Let Y (1)i represent the residuals from the least-squares regression of
Y on all of the X ’s with the exception of X1:

Yi = A(1) +B
(1)
2 Xi2 + · · · +B

(1)

k Xik + Y
(1)
i

• Likewise, X(1)
i are the residuals from the least-squares regression of

X1 on all the other X ’s:
Xi1 = C(1) +D

(1)
2 Xi2 + · · · +D

(1)

k Xik +X
(1)
i

• The notation emphasizes the interpretation of the residuals Y (1) and
X(1) as the parts of Y and X1 that remain when the effects of X2, ..., Xk

are ‘removed.’

• The residuals Y (1) and X(1) have the following interesting properties:

1. The slope from the least-squares regression of Y (1) on X(1) is simply
the least-squares slope B1 from the full multiple regression.
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2. The residuals from the simple regression of Y (1) on X(1) are the same
as those from the full regression:

Y
(1)
i = B1X

(1)
i +Ei

No constant is required, because both Y (1) and X(1) have means of 0.

3. The variation of X(1) is the conditional variation of X1 holding the other
X ’s constant and, as a consequence, the standard error of B1 in the
auxiliary simple regression

SE(B1) =
SEqP
X
(1)2

i

is (except for df ) the multiple-regression standard error of B1. Unless
X1 is uncorrelated with the other X ’s, its conditional variation is smaller
than its marginal variation — much smaller, if X1 is strongly collinear
with the other X ’s.
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• Plotting Y (1) against X(1) permits us to examine leverage and influence
on B1. Because of properties 1–3, this plot also provides a visual
impression of the precision of estimation of B1.

• Similar added-variable plots can be constructed for the other regres-
sion coefficients:

Plot Y (j) versus X(j) for each j = 0, ..., k

I Illustrative added-variable plots are shown in Figure 32, using data
from Duncan’s regression of occupational prestige on the income and
educational levels of 45 U.S. occupations:

\Prestige = −6.06 + 0.599× Income + 0.546× Education
(4.27) (0.120) (0.098)

R2 = 0.83 SE = 13.4
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Figure 32. Added-variable plots for Duncan’s occupational prestige regres-
sion, (a) for income, and (b) for education.
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• The added-variable plot for income (a) reveals three unusual data
points:
· ministers, whose income is unusually low given the educational level

of the occupation; and

· railroad conductors and railroad engineers, whose incomes are
unusually high given education.

· Together, ministers and railroad conductors reduce the income
slope; railroad engineers, while a high-leverage point, are more in
line with the rest of the data.

· Remember that the horizontal variable in this added-variable plot is
the residual from the regression of income on education, and thus
values far from 0 in this direction are for occupations with incomes
that are unusually high or low given their levels of education.
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• The added-variable plot for education (b) shows that the same three
observations have relatively high leverage on the education coefficient:
· ministers and railroad conductors tend to increase the education

slope;

· railroad engineers appear to be closer in line with the rest of the
data.

I Deleting ministers and conductors produces the fitted regression
\Prestige = −6.41 + 0.867× Income + 0.332× Education

(3.65) (0.122) (0.099)

R2 = 0.88 SE = 11.4

which has a larger income slope and smaller education slope than the
original regression.
• The estimated standard errors are likely optimistic, because relative

outliers have been trimmed away.
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• Deleting railroad engineers, along with ministers and conductors,
further increases the income slope and decreases the education slope,
but the change is not dramatic: BIncome = 0.931, BEducation = 0.285.
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4.8 Should Unusual Data Be Discarded?
I Although problematic data should not be ignored, they also should not

be deleted automatically and without reflection:

I It is important to investigate why an observation is unusual.
• Truly bad data (e.g., as in Davis’s regression) can be corrected or

thrown away.

• When a discrepant data-point is correct, we may be able to understand
why the observation is unusual.
· For Duncan’s regression, for example, it makes sense that ministers

enjoy prestige not accounted for by the income and educational
levels of the occupation.

· In a case like this, we may choose to deal separately with an outlying
observation.
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I Outliers or influential data may motivate model respecification.
• For example, the pattern of outlying data may suggest the introduction

of additional explanatory variables.
· If, in Duncan’s regression, we can identify a variable that produces

the unusually high prestige of ministers (net of their income and ed-
ucation), and if we can measure that variable for other observations,
then the variable could be added to the regression.

• In some instances, transformation of the response variable or of an
explanatory variable may draw apparent outliers towards the rest of
the data, by rendering the error distribution more symmetric or by
eliminating nonlinearity.

• We must, however, be careful to avoid ‘over-fitting’ the data —
permitting a small portion of the data to determine the form of the
model.
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I Except in clear-cut cases, we are justifiably reluctant to delete observa-
tions or to respecify the model to accommodate unusual data.
• Some researchers reasonably adopt alternative estimation strategies,

such as robust regression, which continuously downweights outlying
data rather than simply including or discarding them.

• Because these methods assign zero or very small weight to highly
discrepant data, however, the result is generally not very different from
careful application of least squares, and, indeed, robust-regression
weights can be used to identify outliers.
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4.9 Summary:Unusual and Influential Data
I Unusual data are problematic in linear models fit by least squares

because they can substantially influence the results of the analysis, and
because they may indicate that the model fails to capture important
features of the data.

I Observations with unusual combinations of explanatory-variables values
have high leverage in a least-squares regression. The hat-values hi
provide a measure of leverage. A rough cutoff for noteworthy hat-values
is hi > 2h = 2(k + 1)/n.
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I A regression outlier is an observation with an unusual response-
variable value given its combination of explanatory-variable values.
The studentized residuals E∗i can be used to identify outliers, through
graphical examination or a Bonferroni test for the largest absolute
E∗i . If the model is correct (and there are no true outliers), then each
studentized residual follows a t-distribution with n − k − 2 degrees of
freedom.

I Observations that combine high leverage with a large studentized
residual exert substantial influence on the regression coefficients.
Cook’s D-statistic provides a summary index of influence on the
coefficients. A rough cutoff is Di > 4/(n− k − 1).

I Subsets of observations can be jointly influential. Added-variable plots
are useful for detecting joint influence on the regression coefficients. The
added-variable plot for the regressor Xj is formed using the residuals
from the least-squares regressions of Xj and Y on all of the other X ’s.

c° 2009 by John Fox FIOCRUZ Brazil



Regression Diagnostics 123

I Outlying and influential data should not be ignored, but they also should
not simply be deleted without investigation. ‘Bad’ data can often be
corrected. ‘Good’ observations that are unusual may provide insight
into the structure of the data, and may motivate respecification of the
statistical model used to summarize the data.
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5. Diagnosing Nonlinearity and Other Ills

5.1 Goals
I To introduce simple methods for detecting non-normality, non-constant

error variance, and nonlinearity.

I To show how these problems can often be corrected by transformation
and other approaches.

I To demonstrate the application of the method of maximum likelihood to
regression diagnostics.
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5.2 Example: The SLID Data
I To illustrate the methods described here, I will primarily use data from

the 1994 wave of Statistics Canada’s Survey of Labour and Income
Dynamics (SLID).

I The SLID data set that I use includes 3997 employed individuals who
were between 16 and 65 years of age and who resided in Ontario.

I Regressing the composite hourly wage rate on a dummy variable for
sex (code 1 for males), education (in years), and age (also in years)
produces the following results:

\Wages = −8.124 + 3.474×Male + 0.2613× Age
(0.599) (0.2070) (0.0087)

+ 0.9296× Education
(0.0343)

R2 = .3074
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5.3 Non-Normally Distributed Errors
I The assumption of normally distributed errors is almost always arbitrary,

but the central-limit theorem assures that inference based on the least-
squares estimator is approximately valid. Why should we be concerned
about non-normal errors?
• Although the validity of least-squares estimation is robust the efficiency

of least squares is not: The least-squares estimator is maximally
efficient among unbiased estimators when the errors are normal.
For heavy-tailed errors, the efficiency of least-squares estimation
decreases markedly.

• Highly skewed error distributions, aside from their propensity to
generate outliers in the direction of the skew, compromise the
interpretation of the least-squares fit as a conditional typical value of
Y .
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• A multimodal error distribution suggests the omission of one or more
discrete explanatory variables that divide the data naturally into
groups.

I Quantile-comparison plots are useful for examining the distribution of
the residuals, which are estimates of the errors.
• We compare the sample distribution of the studentized residuals, E∗i ,

with the quantiles of the unit-normal distribution, N(0, 1), or with those
of the t-distribution for n− k − 2 degrees of freedom.

• Even if the model is correct, the studentized residuals are not an
independent random sample from tn−k−2. Correlations among the
residuals depend upon the configuration of the X-values, but they are
generally negligible unless the sample size is small.

• At the cost of some computation, it is possible to adjust for the de-
pendencies among the residuals in interpreting a quantile-comparison
plot.

c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 128

I The quantile-comparison plot is effective in displaying the tail behavior
of the residuals: Outliers, skewness, heavy tails, or light tails all show up
clearly.

I Other univariate graphical displays, such as histograms and density
estimates, effectively supplement the quantile-comparison plot.

I Figure 33 shows a t quantile-comparison plot and a density estimate for
the studentized residuals from the SLID regression.
• The distribution of the studentized residuals is positively skewed and

there may be more than one mode.

• The positive skew in the residual distribution can be corrected by
transforming the response variable down the ladder of powers, in this
case using logs, producing the residual distribution shown in Figure
34.
· The resulting residual distribution has a slight negative skew, but I

preferred the log transformation to the 1/3 power for interpretability.
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Figure 33. (a) Quantile-comparison plot with point-wise 95-percent simu-
lated confidence envelope and (b) adaptive kernel-density estimate for the
studentized residuals from the SLID regression.
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· Note that the residual distribution is heavy-tailed and possibly
bimodal.
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Figure 34. (a) Quantile-comparison plot, and (b) adaptive kernel-density
estimate for the studentized residuals from the SLID regression with wages
log-transformed.
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5.4 Non-Constant Error Variance
I Although the least-squares estimator is unbiased and consistent even

when the error variance is not constant, its efficiency is impaired, and
the usual formulas for coefficient standard errors are inaccurate.
• Non-constant error variance is sometimes termed ‘heteroscedasticity.’

I Because the regression surface is k-dimensional, and imbedded in a
space of k + 1 dimensions, it is generally impractical to assess the
assumption of constant error variance by direct graphical examination of
the data.

I It is common for error variance to increase as the expectation of Y grows
larger, or there may be a systematic relationship between error variance
and a particular X.
• The former situation can often be detected by plotting residuals against

fitted values;

• the latter by plotting residuals against each X.
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• Plotting residuals against Y (as opposed to bY ) is generally unsatisfac-
tory, because the plot will be ‘tilted’
· There is a built-in linear correlation between Y and E, since
Y = bY +E.

· The least-squares fit insures that the correlation between bY and E is
zero, producing a plot that is much easier to examine for evidence of
non-constant spread.

• Because the residuals have unequal variances even when the variance
of the errors is constant, it is preferable to plot studentized residuals
against fitted values.

• It often helps to plot |E∗i | or E∗2i against bY .

• It is also possible to adapt Tukey’s spread-level plot (as long as all
of the fitted values are positive), graphing log absolute studentized
residuals against log fitted values.
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I Figure 35 shows a plot of studentized residuals against fitted values and
a spread-level plot for the SLID regression.
• The increasing spread with increasing bY suggests moving Y down the

ladder of powers to stabilize the variance.

• The slope of the line in the spread-level plot is b = 0.9994, suggesting
the transformation p = 1 − 0.9994 = 0.0006 ≈ 0 (i.e., the log
transformation).

• After log-transforming Y , the diagnostic plots look much better (Figure
36).

I There are alternatives to transformation for dealing with non-constant
error variance.
• Weighted-least-squares (WLS) regression, for example, can be used,

down-weighting observations that have high variance.

• It is also possible to correct the estimated standard errors of the
ordinary least squares (OLS) estimates for non-constant spread.
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Figure 35. (a) Studentized residuals vs. fitted values, and (b) spread-level
plot for the SLID regression. A few observations with bY ≤ 0 were removed
from (b), and the line is fit by robust regression.
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Figure 36. (a) Studentized residuals versus fitted values, and (b) spread-
-level plot for the SLID regression after log-transforming wages.
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I Non-constant error variance is a serious problem only when it is relatively
extreme — say when the magnitude (i.e., the standard deviation) of the
errors varies by more than a factor of about three — that is, when the
largest error variance is more than about 10 times the smallest (although
there are cases where this simple rule fails to offer sufficient protection).
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5.5 Nonlinearity
I The assumption that the average error, E(ε), is everywhere zero implies

that the specified regression surface accurately reflects the dependency
of Y on the X ’s.
• The term ‘nonlinearity’ is therefore not used in the narrow sense here,

although it includes the possibility that a partial relationship assumed
to be linear is in fact nonlinear.

• If, for example, two explanatory variables specified to have additive
effects instead interact, then the average error is not zero for all
combinations of X-values.

• If nonlinearity, in the broad sense, is slight, then the fitted model
can be a useful approximation even though the regression surface
E(Y |X1, ...Xk) is not captured precisely.

• In other instances, however, the model can be seriously misleading.
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I The regression surface is generally high dimensional, even after
accounting for regressors (such as dummy variables, interactions, and
polynomial terms) that are functions of a smaller number of fundamental
explanatory variables.
• As in the case of non-constant error variance, it is necessary to focus

on particular patterns of departure from linearity.

• The graphical diagnostics discussed in this section are two-
dimensional projections of the (k + 1)-dimensional point-cloud of
observations {Yi,Xi1, ..., Xik}.

c° 2009 by John Fox FIOCRUZ Brazil

Regression Diagnostics 140

5.5.1 Component+Residual Plots

I Although it is useful in multiple regression to plot Y against each X,
these plots can be misleading, because our interest centers on the
partial relationship between Y and each X, controlling for the other
X ’s, not on the marginal relationship between Y and an individual X,
ignoring the other X ’s.

I Plotting residuals or studentized residuals against each X is frequently
helpful for detecting departures from linearity.
• As Figure 37 illustrates, however, residual plots cannot distinguish

between monotone and non-monotone nonlinearity.
· The distinction is important because monotone nonlinearity fre-

quently can be ‘corrected’ by simple transformations.

· Case (a) might be modeled by Y = α + β
√
X + ε.

c° 2009 by John Fox FIOCRUZ Brazil



Regression Diagnostics 141

(a)

X

Y

X

E

0

(b)

X

Y

X

E

0

Figure 37. The residual plots of E versus X (bottom) are identical, even
though the regression of Y on X in (a) is monotone while that in (b) is
non-monotone.
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· Case (b) cannot be linearized by a power transformation of X,
and might instead be dealt with by the quadratic regression,
Y = α + β1X + β2X

2 + ε.

I Added-variable plots, introduced previously for detecting influential data,
can reveal nonlinearity and suggest whether a relationship is monotone.
• These plots are not always useful for locating a transformation,

however: The added-variable plot adjusts Xj for the other X ’s, but it is
the unadjusted Xj that is transformed in respecifying the model.

I Component+residual plots, also called partial-residual plots (as opposed
to partial-regression = added-variable plots) are often an effective
alternative.
• Component+residual plots are not as suitable as added-variable plots

for revealing leverage and influence.

• The partial residual for the jth explanatory variable is

E
(j)
i = Ei +BjXij
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• In words, add back the linear component of the partial relationship
between Y and Xj to the least-squares residuals, which may include
an unmodeled nonlinear component.

• Then plot E(j) versus Xj.

• By construction, the multiple-regression coefficient Bj is the slope of
the simple linear regression of E(j) on Xj, but nonlinearity may be
apparent in the plot as well.

I The component+residual plots in Figure 38 are for age and education in
the SLID regression, using log-wages as the response.
• Both plots look nonlinear:
· It is not entirely clear whether the partial relationship of log wages to

age is monotone, simply tending to level off at the higher ages, or
whether it is non-monotone, turning back down at the far right.
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Figure 38. Component-plus-residual plots for age and education in the
SLID regression of log wages on these variables and sex. A lowess
smooth (span = 0.4) and least-squares line is shown on each graph.
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· The partial relationship of log wages to education is clearly
monotone, and the departure from linearity is not great—except
at the lowest levels of education, where data are sparse; we should
be able to linearize this partial relationship by moving education up
the ladder of powers, because the bulge points to the right.

· Trial and error experimentation suggests that the quadratic spec-
ification for age works better, producing the following fit to the
data:

\log2Wages = 0.5725 + 0.3195×Male + 0.1198× Age
(0.0834) (0.0180) (0.0046)

− 0.001230× Age2 + 0.002605× Education2

(0.000059) (0.000113)

R2 = .3892
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• We can take two approaches to constructing component+residual
plots for this respecified model:

1. We can plot partial residuals for each of age and education against
the corresponding explanatory variable. In the case of age, the partial
residuals are computed as

E
(Age)
i = 0.1198× Agei − 0.001230× Age2i + Ei

and for education,
E

(Education)
i = 0.002605× Education2i + Ei

See the upper panels of Figure 39; the solid lines are the partial fits
(i.e., the components) for the two explanatory variables,bY (Age)

i = 0.1198× Agei − 0.001230× Age2ibY (Education)
i = 0.002605× Education2i

2. We can plot the partial residuals against the partial fits. See the two
lower panels of Figure 39.

c° 2009 by John Fox FIOCRUZ Brazil



Regression Diagnostics 147

20 30 40 50 60

0
1

2
3

4

(a)

Age (years)

C
om

po
ne

nt
 +

 R
es

id
ua

l

1.6 1.8 2.0 2.2 2.4 2.6 2.8

0
1

2
3

4

(b)

Component = 0.12Age−0.00123Age
2

C
om

po
ne

nt
 +

 R
es

id
ua

l

0 5 10 15 20

-2
-1

0
1

2
3

(c)

Education (years)

C
om

po
ne

nt
 +

 R
es

id
ua

l

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
3

(d)

Component = 0.0026Education
2

C
om

po
ne

nt
 +

 R
es

id
ua

l

Figure 39. Component-plus-residual plots for age [panels (a) and (b)] and
education [panels (c) and (d)] in the respecified model fit to the SLID data.
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I Interpretation of the respecified SLID regression model is complicated
by the transformation of the response (log2wages), the transformation of
education, and the use of a quadratic for age.
• The coefficient of the dummy variable for sex, 0.3195, implies that at

fixed levels of age and education, men on average earn 20.3195 = 1.25
times (i.e., 25 percent more) than women.

• ‘Effect displays’ for the partial relationship of wages to age and
education are shown in Figure 40. Each effect plot is obtained by
setting the other variable (e.g., education in the case of age) to its
mean, while the focal variable (e.g., age) takes on its range of values
in the data, computing the fitted value of the response under the model
for each value of the focal variable.
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Figure 40. Effect displays for age and education in the regression of log
wages on a quadratic in age, the square of education, and sex. The lighter
lines give 95-percent point-wise confidence envelopes around the fits.
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5.5.2 When Do Component+Residual Plots Work?

I Imagine that the following model accurately describes the data:
Yi = α + f(Xi1) + β2Xi2 + · · · + βkXik + εi

• That is, the partial relationship between Y and X1 is (potentially)
nonlinear, characterized by the function f(X1), while the other
explanatory variables, X2, ..., Xk enter the model linearly.

I Instead of fitting this model to the data, we fit the ‘working model’
Yi = α0 + β01Xi1 + β02Xi2 + · · · + β0kXik + ε0i

and construct a component+residual plot for the working model.

I The partial residuals estimate

ε
(1)
i = β01Xi1 + ε0i

• What we would really like to estimate, however, is f(Xi1) + εi, which,
apart from random error, will tell us the partial relationship between Y

and X1.

I Cook (1993) shows that ε(1)i = f(Xi1) + εi, as desired, under either of
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two circumstances:
• The function f(X1) is linear.

• The other explanatory variables X2, ..., Xk are each linearly related to
X1. That is,

E(Xij) = αj1 + βj1Xi1 for j = 2, ..., k

I If there are nonlinear relationships between other X ’s and X1, then the
component+residual plot for X1 may appear nonlinear even if the true
partial regression is linear.

I The second result suggests a practical procedure for improving the
chances that component+residual plots will provide accurate evidence
of nonlinearity:
• If possible, transform the explanatory variables to linearize the

relationships among them.
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I Evidence suggests that weak nonlinearity is not especially problematic,
but strong nonlinear relationships among the explanatory variables can
invalidate the component+residual plot as a useful diagnostic display.
• There are more sophisticated versions of component+residual plots

that are more robust.
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5.6 Discrete Data
I Discrete explanatory and response variables often lead to plots that

are difficult to interpret, a problem that can be rectified by ‘jittering’ the
plotted points.
• A discrete response variable also violates the assumption that the

errors in a linear model are normally distributed.

• Discrete explanatory variables, in contrast, are perfectly consistent
with the general linear model, which makes no distributional assump-
tions about the X ’s, other than independence between the X ’s and
the errors.

• Because it partitions the data into groups, a discrete X (or combination
of X ’s) facilitates straightforward tests of nonlinearity and non-constant
error variance.
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5.6.1 Testing for Nonlinearity (‘Lack of Fit’)

I Recall the data on vocabulary and education collected in the U.S.
General Social Survey. Years of education in this dataset range between
0 and 20 (see Figure 41). We model the relationship between vocabulary
score and education in two ways:

1. Fit a linear regression of vocabulary on education:
Yi = α + βXi + εi (Model 1)

2. Model education with a set of 20 dummy regressors (treating 0 years as
the baseline category):

Yi = α0 + γ1Di1 + γ2Di2 + · · · + γ20Di, 20 + ε0i (Model 2)
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Figure 41. Mean vocabulary score by years of education. The size of the
points is proportional to the number of observations. The broken line is the
least-squares line.
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I Contrasting the two models produces a test for nonlinearity, because
the first model, specifying a linear relationship between vocabulary
and education, is a special case of the second, which can capture any
pattern of relationship between E(Y ) and X.
• The resulting incremental F -test for nonlinearity appears in the

following ANOVA table:
Source SS df F p
Education
(Model 2) 26,099 20 374.44 ¿ .0001

Linear
(Model 1) 25,340 1 7,270.99 ¿ .0001

Nonlinear
(“lack of fit” ) 759 19 11.46 ¿ .0001

Error
(“pure error” ) 75,337 21,617
Total 101,436 21,637
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• Note that while it is highly statistically significant, the nonlinear
component accounts for very little of the variation in vocabulary
scores.

I The incremental F -test for nonlinearity can easily be extended to a
discrete explanatory variable — say X1 — in a multiple-regression
model.
• Here, we need to contrast the general model

Yi = α + γ1Di1 + · · · + γm−1Di,m−1 + β2Xi2 + · · · + βkXik + εi
with the model specifying a linear effect of X1,

Yi = α + β1Xi1 + β2Xi2 + · · · + βkXik + εi
where D1, ..., Dm−1 are dummy regressors constructed to represent
the m categories of X1.
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5.6.2 Testing for Non-Constant Error Variance

I A discrete X (or combination of X ’s) partitions the data into m groups
(as in analysis of variance).
• Let Yij denote the ith of nj response-variable scores in group j.

• If the error variance is constant across groups, then the within-group
sample variances

S2j =

Pnj
i=1(Yij − Y j)

2

nj − 1
should be similar.
· Tests that examine the S2j directly do not maintain their validity well

when the distribution of the errors is non-normal.
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I The following simple F -test (called Levene’s test) is both robust and
powerful:
• Calculate the values

Zij ≡ |Yij − eYj|
where eYj is the median response-variable value in group j.

• Then perform a one-way analysis-of-variance of the Zij over the m

groups.

• If the error variance is not constant across the groups, then the group
means Zj will tend to differ, producing a large value of the F -test
statistic.
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• For the vocabulary data, where education partitions the 21, 638
observations into m = 21 groups, F0 = 4.26, with 20 and 21, 617
degrees of freedom, for which p ¿ .0001. There is, therefore, strong
evidence of non-constant spread in vocabulary across the categories
of education, though, as revealed in Figure 42, the within-group
standard deviations are not very different (discounting the small
numbers of individuals with very low levels of education).
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Figure 42. Standard deviation of vocabulary scores by education. The
relative size of the points is proportional to the number of observations.
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5.7 Maximum-Likelihood Methods
I A statistically sophisticated approach to selecting a transformation of Y

or an X is to imbed the linear model in a more general nonlinear model
that contains a parameter for the transformation.
• If several variables are potentially to be transformed then there may

be several such parameters.

I Suppose that the transformation is indexed by a single parameter λ,
and that we can write down the likelihood for the model as a function
of the transformation parameter and the usual regression parameters:
L(λ, α, β1, ..., βk, σ

2
ε).

• Maximizing the likelihood yields the maximum-likelihood estimate of λ
along with the MLEs of the other parameters.

• Now suppose that λ = λ0 represents no transformation (e.g., λ0 = 1
for the power transformation Y λ).
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• A likelihood-ratio test, Wald test, or score test of H0:λ = λ0 assesses
the evidence that a transformation is required.

• A disadvantage of the likelihood-ratio and Wald tests is that they
require finding the MLE, which usually requires iteration.
· In contrast, the slope of the log-likelihood at λ0 — on which the score

test depends — generally can be assessed or approximated without
iteration.

· Often, the score test can be formulated as the t-statistic for a new
regressor, called a constructed variable, to be added to the linear
model.

· Moreover, an added-variable plot for the constructed variable then
can reveal whether one or a small group of observations is unduly
influential in determining the transformation.
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5.7.1 Box-Cox Transformation of Y

I Box and Cox suggest power transformation of Y with the object of
normalizing the error distribution.

I The general Box-Cox model is

Y
(λ)
i = α + β1Xi1 + · · · + βkXik + εi

where the errors εi are independently N(0, σ2ε), and

Y
(λ)
i =

⎧⎪⎪⎨⎪⎪⎩
Y λ
i − 1
λ

for λ 6= 0

loge Yi for λ = 0

• Note that all of the Yi must be positive.
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I A simple procedure for finding the MLE is to evaluate the maximized
loge L(α, β1, ..., βk, σ

2
ε|λ), called the profile log-likelihood, for a range of

values of λ, say between −2 and +2.
• If this range turns out not to contain the maximum of the log-likelihood,

then the range can be expanded.

• To test H0:λ = 1, calculate the likelihood-ratio statistic
G20 = −2[loge L(λ = 1)− loge L(λ = bλ)]

which is asymptotically distributed as χ2 with one degree of freedom
under H0.

• Equivalently, a 95-percent confidence interval for λ includes those
values for which

loge L(λ) > loge L(λ =
bλ)− 1.92

· The figure 1.92 comes from 1/2× χ21,.05 = 1/2× 1.962.
I Figure 43 shows a plot of the profile log-likelihood against λ for the

original SLID regression.
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Figure 43. Box-Cox transformations for the SLID regression of wages on
sex, age, and education. The profile log-likelihood is plotted against the
transformation parameter λ.
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• The maximum-likelihood estimate of λ is bλ = 0.09, and a 95%
confidence interval, marked out by the intersection of the line near the
top of the graph with the profile log-likelihood, runs from 0.04 to 0.13.

I Atkinson has proposed an approximate score test for the Box-Cox
model, based on the constructed variable

Gi = Yi

∙
loge

µ
YieY
¶
− 1
¸

where eY is the geometric mean of Y :eY ≡ (Y1 × Y2 × · · · × Yn)
1
n

• The augmented regression, including the constructed variable, is then
Yi = α + β1Xi1 + · · · + βkXik + φGi + εi

• The t-test of H0:φ = 0, that is, t0 = bφ/SE(bφ), assesses the need for a
transformation.
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• An estimate of λ (though not the MLE) is given by eλ = 1− bφ.

• The added-variable plot for the constructed variable G shows influence
and leverage on bφ, and hence on the choice of λ.

• Atkinson’s constructed-variable plot for the interlocking-directorate
regression is shown in Figure 44.
· The coefficient of the constructed variable in the regression isbφ = 1.454, with SE(bφ) = 0.026, providing overwhelmingly strong

evidence of the need to transform Y .

· The suggested transformation, eλ = 1 − 1.454 = −0.454, is far from
the MLE.

I The Box-Cox method can also be applied to the marginal distribution of
a variable, or multivariately, to the joint distribution of several variables.
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Figure 44. Constructed-variable plot for the Box-Cox transformation of
wages in the SLID regression. The least-squares line is shown on the
plot.
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5.7.2 Box-Tidwell Transformation of the X’s

I Now, consider the model
Yi = α + β1X

γ1
i1 + · · · + βkX

γk
ik + εi

where the errors are independently distributed as εi ∼ N(0, σ2ε), and all
of the Xij are positive.

I The parameters of this model — α, β1, ..., βk, γ1, ..., γk, and σ2ε — could
be estimated by general nonlinear least squares, but Box and Tidwell
suggest instead a computationally more efficient procedure that also
yields a constructed-variable diagnostic:

1. Regress Y on X1, ..., Xk, obtaining A,B1, ..., Bk.

2. Regress Y on X1, ..., Xk and the constructed variables
X1 loge X1, ..., Xk loge Xk, obtaining A0, B0

1, ..., B
0
k and D1, ..., Dk.
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3. The constructed variable Xj loge Xj can be used to assess the need for
a transformation of Xj by testing the null hypothesis H0: δj = 0, where
δj is the population coefficient of Xj loge Xj in step 2. Added-variable
plots for the constructed variables are useful for assessing leverage and
influence on the decision to transform the X ’s.

4. A preliminary estimate of the transformation parameter γj (not the MLE)
is given by eγj = 1 + Dj

Bj

I This procedure can be iterated through steps 1, 2, and 4 until the
estimates of the transformation parameters stabilize, yielding the MLEsbγj.
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I Consider the SLID regression of log wages on sex, education, and age.
• The dummy regressor for sex is not a candidate for transformation, of

course, but I will consider power transformations of age and education.
· Recall that we were initially undecided about whether to model the

age effect as a quadratic or as a transformation down the ladder of
powers and roots.

• To make power transformations of age more effective, I use a negative
start of 15 (recall that age ranges from 16 to 65).

• The coefficients of (Age −15) × loge(Age −15) and Education×
logeEducation in the step-2 augmented model are, respectively,
DAge = −0.04699 with SE(DAge) = 0.00231, and DEducation = 0.05612

with SE(DEducation) = 0.01254.

• Both score tests are statistically significant, but there is much stronger
evidence of the need to transform age.
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• The first-step estimates of the transformation parameters areeγAge = 1 +
DAge

BAge
= 1 +

−0.04699
0.02619

= −0.79

eγEducation = 1 +
DEducation

BEducation
= 1 +

0.05612

0.08061
= 1.69

• The fully iterated MLEs of the transformation parameters are bγAge =

0.051 and bγEducation = 1.89 — very close to the log transformation of
started-age and the square of education.

• Constructed-variable plots for the transformation of age and education
are shown in Figure 45.
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Figure 45. Constructed-variable plots for the Box-Tidwell transformation of
(a) age and (b) education in the SLID regression of log wages on sex, age,
and education.
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5.7.3 Non-Constant Error Variance Revisited

I Breusch and Pagan develop a score test for heteroscedasticity based
on the specification:

σ2i ≡ V (εi) = g(γ0 + γ1Zi1 + · · · + γpZip)

where Z1, ..., Zp are known variables, and where the function g(·) is quite
general.
• The same test was independently derived by Cook and Weisberg.

I The score statistic for the hypothesis that the σ2i are all the same,
which is equivalent to H0: γ1 = · · · = γp = 0, can be formulated as an
auxiliary-regression problem.
• Let Ui ≡ E2i /bσ2ε, where bσ2ε =PE2i /n is the MLE of the error variance.

Regress U on the Z ’s:
Ui = η0 + η1Zi1 + · · · + ηpZip + ωi
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• Breusch and Pagan show that the score statistic

S20 =

P
(bUi − U)2

2
is asymptotically distributed as χ2 with p degrees of freedom under the
null hypothesis of constant error variance.

• Here, the bUi are fitted values from the regression of U on the Z ’s,
and thus S20 is half the regression sum of squares from the auxiliary
regression.

I To apply this result, it is necessary to select Z ’s, the choice of which
depends upon the suspected pattern of non-constant error variance.
• Employing X1, ..., Xk in the auxiliary regression, for example, permits

detection of a tendency of the error variance to increase (or decrease)
with the values of one or more of the explanatory variables in the main
regression.
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• Cook and Weisberg suggest regressing U on the fitted values from the
main regression (i.e., Ui = η0 + η1

bYi + ωi), producing a one-degree-
of-freedom score test to detect the common tendency of the error
variance to increase with the level of the response variable.
· Anscombe suggests correcting detected heteroscedasticity by

transforming Y to Y (
eλ) with eλ = 1− 1/2bη1Y .

I Applied to the initial SLID regression of wages on sex, age, and
education, an auxiliary regression of U on bY yields bU = −0.3449 +
0.08652bY , and S20 = 567.66/2 = 283.83 on 1 degree of freedom, for which
p ≈ 0.
• The suggested variance-stabilizing transformation using Anscombe’s

rule is eλ = 1− 1
2
(0.08652)(15.545) = 0.33
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• An auxiliary regression of U on the explanatory variables in the main
regression yields S20 = 579.08/2 = 289.54 on k = 3 degrees of freedom.
· The score statistic for the more general test is not much larger

than that for the regression of U on bY , implying that the pattern of
non-constant error variance is indeed for the spread of the errors to
increase with the level of Y .
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5.8 Summary: Nonlinearity and Other Ills
I Heavy-tailed errors threaten the efficiency of least-squares estimation;

skewed and multimodal errors compromise the interpretation of the
least-squares fit.
• Non-normality can often be detected by examining the distribution

of the least-squares residuals, and frequently can be corrected by
transforming the data.

I It is common for the variance of the errors to increase with the level of
the response variable.
• This pattern of non-constant error variance can often be detected in a

plot of residuals against fitted values.
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• Strategies for dealing with non-constant error variance include
transformation of the response variable to stabilize the variance;
the substitution of weighted-least-squares estimation for ordinary
least squares; and the correction of coefficient standard errors for
heteroscedasticity.

• A rough rule of thumb is that non-constant error variance seriously
degrades the least-squares estimator only when the ratio of the largest
to smallest variance is about 10 or more.

I Simple forms of nonlinearity can often be detected in compo-
nent+residual plots.
• Once detected, nonlinearity can frequently be accommodated by

variable transformations or by altering the form of the model (to
include a quadratic term in an explanatory variable, for example).

• Component+residual plots adequately reflect nonlinearity when the
explanatory variables are themselves not strongly nonlinearly related.
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I Discrete explanatory variables divide the data into groups.
• A simple incremental F -test for nonlinearity compares the sum of

squares accounted for by the linear regression of Y on X with the sum
of squares accounted for by differences in the group means.

• Likewise, tests of non-constant variance can be based upon compar-
isons of spread in the different groups.

I A statistically sophisticated general approach to selecting a transfor-
mation of Y or an X is to imbed the linear-regression model in a more
general model that contains a parameter for the transformation.
• The Box-Cox procedure selects a power transformation of Y to

normalize the errors.

• The Box-Tidwell procedure selects power transformations of the X ’s
to linearize the regression of Y on the X ’s.

• In both cases, ‘constructed-variable’ plots help us to decide whether
individual observations are unduly influential in determining the
transformation parameters.
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I Simple score tests are available to determine the need for a transforma-
tion and to test for non-constant error variance.
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6. Diagnostics for Generalized Linear Models

6.1 Goals
I To review the structure of generalized linear models.

I To show how diagnostics for unusual data and nonlinearity can be
extended to generalized linear models.
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6.2 Review: The Structure of Generalized Linear
Models
I A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution of the
response variable, Yi, given the explanatory variables.
• Traditionally, the random component is a member of an “exponential

family” — the normal (Gaussian), binomial, Poisson, gamma, or
inverse-Gaussian families of distributions — but generalized linear
models have been extended beyond the exponential families.

• The Gaussian and binomial distributions are familiar.

• Poisson distributions are often used in modeling count data. Poisson
random variables take on non-negative integer values, 0, 1, 2, . . ..
Some examples are shown in Figure 46.
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Figure 46. Poisson distributions for various values of the “rate” parameter
(mean) μ.
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• The gamma and inverse-Gaussian distributions are for positive
continuous data; some examples are given in Figure 47.

2. A linear function of the regressors, called the linear predictor,
ηi = α + β1Xi1 + · · · + βkXik

on which the expected value μi of Yi depends.
• The X ’s may include quantitative predictors, but they may also include

transformations of predictors, polynomial terms, contrasts generated
from factors, interaction regressors, etc.

3. An invertible link function g(μi) = ηi, which transforms the expectation
of the response to the linear predictor.
• The inverse of the link function is sometimes called the mean function:
g−1(ηi) = μi.
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Figure 47. (a) Several gamma distributions for “scale” ω = 1 and various
values of the “shape” parameter ψ. (b) Inverse-Gaussian distributions for
several combinations of values of the mean μ and “inverse-dispersion” λ.
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• Standard link functions and their inverses are shown in the following
table:

Link ηi = g(μi) μi = g−1(ηi)
identity μi ηi
log loge μi eηi

inverse μ−1i η−1i
inverse-square μ−2i η

−1/2
i

square-root
√
μi η2i

logit loge
μi

1− μi

1

1 + e−ηi
probit Φ−1(μi) Φ(ηi)

log-log − loge[− loge(μi)] exp[− exp(−ηi)]
complementary log-log loge[− loge(1− μi)] 1− exp[− exp(ηi)]

• The logit, probit, and complementary-log-log links are for binomial
data, where Yi represents the observed proportion and μi the
expected proportion of “successes” in ni binomial trials — that is, μi is
the probability of a success.
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· For the probit link, Φ is the standard-normal cumulative distribution
function, and Φ−1 is the standard-normal quantile function.

· An important special case is binary data, where all of the binomial
trials are 1, and therefore all of the observed proportions Yi are
either 0 or 1.

I For distributions in the exponential families, the conditional variance of
Y is a function of the mean μ together with a dispersion parameter φ (as
shown in the table below).
• For the binomial and Poisson distributions, the dispersion parameter

is fixed to 1.

• For the Gaussian distribution, the dispersion parameter is the usual
error variance, which we previously symbolized by σ2ε (and which
doesn’t depend on μ).
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Family Canonical Link Range of Yi V (Yi|ηi)
Gaussian identity (−∞,+∞) φ

binomial logit
0, 1, ..., ni

ni

μi(1− μi)

ni
Poisson log 0, 1, 2, ... μi
gamma inverse (0,∞) φμ2i
inverse-Gaussian inverse-square (0,∞) φμ3i
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I The canonical link for each familiy is not only the one most commonly
used, but also arises naturally from the general formula for distributions
in the exponential families.
• Other links may be more appropriate for the specific problem at hand

• One of the strengths of the GLM paradigm — in contrast, for example,
to transformation of the response variable in a linear model — is the
separation of the link function from the conditional distribution of the
response.

I GLMs are typically fit to data by the method of maximum likelihood.
• Denote the maximum-likelihood estimates of the regression parame-

ters as bα, bβ1, ..., bβk.
· These imply an estimate of the mean of the response, bμi =
g−1(bα + bβ1xi1 + · · · + bβkxik).
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• The log-likelihood for the model, maximized over the regression
coefficients, is

loge L0 =

nX
i=1

loge p(bμi, φ; yi)
where p(·) is the probability or probability-density function correspond-
ing to the family employed.

• A “saturated” model, which dedicates one parameter to each observa-
tion, and hence fits the data perfectly, has log-likelihood

loge L1 =

nX
i=1

loge p(yi, φ; yi)

• Twice the difference between these log-likelihoods defines the residual
deviance under the model, a generalization of the residual sum of
squares for linear models:

D(y; bμ) = 2(loge L1 − loge L0)
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• Dividing the deviance by the estimated dispersion produces the scaled
deviance: D(y; bμ)/bφ.

• Likelihood-ratio tests can be formulated by taking differences in the
residual deviance for nested models.

• For models with an estimated dispersion parameter, one can alterna-
tively use incremental F -tests.

• Wald tests for individual coefficients are formulated using the estimated
asymptotic standard errors of the coefficients.
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6.3 Outlier, Leverage, and Influence Diagnostics for
GLMs
I Most regression diagnostics extend straightforwardly to generalized

linear models.

I These extensions typically take advantage of the computation of
maximum-likelihood estimates for generalized linear models by iterated
weighted least squares (the procedure typically used to fit GLMs).
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6.3.1 Hat-Values

I Hat-values for a generalized linear model can be taken directly from the
final iteration of the IWLS procedure

I They have the usual interpretation — except that the hat-values in a
GLM depend on Y as well as on the configuration of the X ’s.
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6.3.2 Residuals

I Several kinds of residuals can be defined for generalized linear models:
• Response residuals are simply the differences between the observed

response and its estimated expected value: Yi − bμi.
• Working residuals are the residuals from the final WLS fit.
· These may be used to define partial residuals for component-plus-

residual plots (see below).

• Pearson residuals are case-wise components of the Pearson
goodness-of-fit statistic for the model:bφ1/2(Yi − bμi)qbV (Yi|ηi)
where φ is the dispersion parameter for the model and V (Yi|ηi) is the
variance of the response given the linear predictor.
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• Standardized Pearson residuals correct for the conditional response
variation and for the leverage of the observations:

RPi =
Yi − bμiqbV (Yi|ηi)(1− hi)

.

• Deviance residuals, Di, are the square-roots of the case-wise
components of the residual deviance, attaching the sign of Yi − bμi.

I Standardized deviance residuals are

RDi =
Diqbφ(1− hi)

I Several different approximations to studentized residuals have been
suggested.
• To calculate exact studentized residuals would require literally refitting

the model deleting each observation in turn, and noting the decline in
the deviance.
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• Here is an approximation due to Williams:

E∗i =
q
(1− hi)R

2
Di + hiR

2
Pi

where, once again, the sign is taken from Yi − bμi.
• A Bonferroni outlier test using the standard normal distribution may be

based on the largest absolute studentized residual.
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6.3.3 Influence Measures

I An approximation to Cook’s distance influence measure is

Di =
R2Pibφ(k + 1) × hi

1− hi

I Approximate values of dfbetaij (influence on each coefficient) may be
obtained directly from the final iteration of the IWLS procedure.

I There are two largely similar extensions of added-variable plots to
generalized linear models, one due to Wang and another to Cook and
Weisberg.
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6.4 Nonlinearity Diagnostics
I Component-plus-residual plots also extend straightforwardly to general-

ized linear models.
• Nonparametric smoothing of the resulting scatterplots can be impor-

tant to interpretation, especially in models for binary responses, where
the discreteness of the response makes the plots difficult to examine.

• Similar effects can occur for binomial and Poisson data.

I Component-plus-residual plots use the linearized model from the last
step of the IWLS fit.
• For example, the partial residual for Xj adds the working residual to
BjXij.

• The component-plus-residual plot graphs the partial residual against
Xj.
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I An illustrative component+residual plot, for assets in an over-dispersed
Poisson regression fit to Ornstein’s interlocking-directorate data appears
in Figure 48.
• This plot is difficult to examine because of the large positive skew in

assets, but it appears as if the assets slope is a good deal steeper at
the left than at the right.

• I therefore investigated transforming assets down the ladder of
powers and roots, eventually arriving at the log transformation, the
component+residual plot for which appears quite straight (Figure 49).
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Figure 48. Component+residual plot for assets in the over-dispersed Pois-
son regression for Ornstein’s data.
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Figure 49. Component+residual plot for log(assets) in the respecified
over-dispersed Poisson regression model for Ornstein’s data.
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6.5 Summary: Diagnostics for GLMs
I Generalized linear models (GLMs) consist of three components:

(a) A random component specifying the conditional distribution of the
response variable Y given the explanatory variables, traditionally a
member of an exponential family — the normal (Gaussian), binomial,
Poisson, gamma, or inverse-Gaussian families of distributions.
· For distributions in exponential families, the conditional variance of
Y is a function of μ, the mean of Y , and of a dispersion parameter
φ; in the binomial and Poisson families, φ is fixed to 1.

(b) A linear predictor, ηi = α + β1Xi1 + · · · + βkXik.

(c) A link function g(μi) = ηi, which transforms the expectation of the
response to the linear predictor; the inverse of the link is the mean
function, g−1(ηi) = μi.

c° 2009 by John Fox FIOCRUZ Brazil



Regression Diagnostics 205

I Traditional GLMs are fit to data by maximum likelihood.

I Most standard linear-model diagnostics may be generalized to GLMs.
These include hat-values, studentized residuals, Cook’s distances,
added-variable plots, and component-plus-residual plots (among
others).
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