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Abstract

We model dynamic contracting competition, where multiple principals (man-

ufacturers) can simultaneously and repeatedly offer complex short-term contracts

to multiple agents (retailers). As each principal’s contract can incorporate other

contracts as inputs, the complexity of contracts escalates, leading to the ”infinite

regress problem” (McAfee, 1993). We demonstrate that, when players exhibit

sufficient patience, the limit equilibrium utility set is determined in terms of

actions and direct mechanisms, even though any kind of complex contracts are

allowed. We identify simple contracts that principals can use without loss of

generality in any path of the game to support any equilibrium payoff profile.
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1 Introduction

In a repeated duopoly, each of two manufacturers produces a good; these are distinct

(or differentiated) goods. These manufacturers must sell their goods to retailers in

wholesale markets, and then retailers sell to consumers. Each manufacturer offers to

sell to one or more retailers at certain prices, which may differ across retailers. Then

each retailer charges a predetermined markup to sell to consumers. The demands for

the goods are unknown to the manufacturers, but observed by retailers. The scenario

is repeated over time.

Clearly each manufacturer would like to have the retailers’ demand information. In

the standard textbook version the price vector offered by each manufacturer cannot

respond to the demand shock. But this seems like an odd limitation. It seems natural

to allow each manufacturer to ask the retailers to send a message, and condition the

selling prices on it. Since all retailers know the demand shock, it should be possible

to elicit it—everyone reports truthfully because everyone else does. This seemingly

natural model can be quite intractable without a priori restrictions on what selling

contracts are allowed.

In his paper on competing auctions in a dynamic setting, McAfee (1993) says “It is

also quite difficult to define the large strategy space since mechanisms must map the set

of mechanisms into outcomes, ...” Unlike single-principal models, private information

is partly endogenous in models with multiple principals because, in addition to any

exogenous private information, agents also observe the contract or terms of trade offered

by the various principals, each of whom knows only his own contract. It seems natural

to then allow a principal to write contracts that ask agents to report all their private

information including the information about other principals’ contracts. However, the

crux is that reporting about a complicated contract requires one that is yet more
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complicated; the complexity of such contracts starts to blow up quickly—this is what

McAfee refers to as the ‘infinite regress problem’.

We study such contracting competition when it is repeated frequently. Multiple

principals compete over the infinite horizon by repeatedly offering non-exclusive short-

term contracts to multiple agents who possess information that the principals want. In

every period each principal offers a contract (or mechanism) specifying that principal’s

current action as a function of the profile of contemporaneous private messages she

receives from the agents. Thus principals can write contracts and take actions, while

agents have information that they can choose to reveal through the use of private

messages. When all players are long-lived, we are interested in identifying the class of

contracts that principals can use without loss of generality, the profiles of utilities that

can be supported in equilibrium, and the strategies needed to do so. Our message is that

it is possible to study these tractably, when the game is repeated frequently enough.

There is no need for exogenous restrictions on the complexity of communication that

short-term contracts permit, a noteworthy feature that distinguishes our work from

several pioneering works such as McAfee (1993).

This paper shows that the infinite regress problem of McAfee does not arise when

principals and agents are patient and interact repeatedly. The equilibrium utility set is

determined in terms of model primitives (actions and direct mechanisms) (See Theorem

1.1 (Equilibrium Characterization)). Although we allow a broad range of contracts,

principals can without loss of generality use simple contracts on and off the equilibrium

path, to support any equilibrium payoff profile (See Theorem 1.2 (Extended Revelation

Principle)); this is ‘without loss of generality’ in the sense that a principal cannot gain

by unilaterally deviating to richer contracts, nor can he punish another player more

severely with richer contracts.

Our key result shows that the minmax payoff of manufacturer j in this game equals
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the solution to a simpler problem: Find the maxmin payoff of j in a simpler game where

j first picks a price vector and then the other manufacturer picks her price to lower j’s

profit as far as possible, given retailers’ truthful reports on the demand parameters and

j’s price vector. As players become patient, any allocation that generates more than

this cutoff for each manufacturer (and zero payoffs for the retailers) can be supported

in a perfect Bayesian equilibrium of the discounted repeated game.

Our equilibrium characterization shares standard elements in the literature on re-

peated games, including the full dimensionality assumption due to Fudenberg and

Maskin (1986)). However, we must grapple with additional issues: (i) calculating the

worst equilibrium utility for principals (which is non-standard because the principal’s

ability to offer any complex short-term contracts (mechanisms) gives him some com-

mitment power and potentially raises his utility when he is being punished), and (ii)

preventing deviations by agents that cannot be identified as coming from a specific

agent. The solution to the first problem is to have agents give no information to a

principal who is being punished. The solution to the second is to restrict attention

to constrained incentive compatible (CIC) mechanisms (i.e., mechanisms where unde-

tectable agent-deviations are not profitable).

We show that all utilities exceeding certain player-specific cutoff values can be

supported in equilibrium when principals and agents are patient. Our work differs

from the typical folk theorem in two ways. First, unlike in that literature and in

single-principal models, the utility cutoffs (or minmax values) in our world are not

easily specified in closed form. By the virtue of the extended revelation principle, we

manage to do so by developing an algorithm to compute the unrestricted minmax value1

as the maxmin value of a much simpler game where the only contracts are constant-

action contracts, direct mechanisms (DMs) and a slight extension of DMs. No such

1That is, without exogenous restrictions on the complexity of mechanisms.
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algorithm exists in the literature. Second, while folk theorems are about utilities, our

results are about the complexity of mechanisms, which are not investigated by the

literature of repeated games because their stage-game typically has a simple form.

Section 2 shows the key ideas of our main results and why the Revelation Principle

fails when all information is commonly known to agents. Section 3 sets up the model.

Sections 4 and 5 formulate the notion of CIC and provide the main results respec-

tively when agents have private information about their payoff type. Our main result,

Theorem 1 is presented in Section 5.1 for the model with three or more agents when

mechanisms and actions are observable by every player at the end of each period.

Corollary 2 in Section 5.2 extends Theorem 1 for the model with two agents. Corol-

laries 3 and 4 in Section 5.3 extend the results when principals do not observe the other

principals’ mechanisms and actions whereas agents observe mechanisms with probabil-

ity one and actions with some positive probability. Section 5.4 discuss the possibility

of relaxing CIC.

Related literature There has been a growing interest in designing dynamic mech-

anisms, with a flurry of research in the last decade. These models study mechanism

design by a single principal (i.e., mechanism designer or mediator) who has full com-

mitment and can thus offer a contract spanning the entire horizon of the game—an

infinite horizon in Bergemann and Välimäki (2010), Athey and Segal (2013), Pavan,

Segal, and Toikka (2014), and Guo and Hörner (2018); and a finite one in Battaglini

and Lamba (2019), and Sugaya and Wolitzky (2021).

Baker, Gibbons, Murphy (1994) and Pearce and Stacchetti (1998) are pioneering

works studying the interaction of explicit (say specifying the wage as a function of

output) and implicit (through incentives provided by repetition) short-term contracts.

Their models do not consider competition among principals in the space of contracts
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and the contracts they consider are restricted to a very simple class. Much of the

difficulty we encounter comes from the fact that we do not limit how many ‘levels’ a

contract may have.

It is only recently that dynamic Bayesian games with multiple players have been

tackled by the literature of repeated games, most relevant being Hörner, Takahashi,

and Vielle (2015). The object of their study is not the structure of actions because

these are simple (unlike contracts, which are the ‘actions’ that principals choose in our

model); rather, they are interested in the limiting utility set of truthful public perfect

equilibria given a fixed action space, abstracting away from contracting possibilities.

We bring contracting processes between multiple principals and multiple agents to the

forefront of equilibrium analysis.

2 Common information: Repeated duopoly

This section presents the key ideas in the context of a model of repeated duopoly,

when all information is commonly known among agents. The structure, although

simple, suffices to bring out the complexity of competition when we do not restrict the

contracting space in an ad hoc way.

At each t ∈ N two manufacturers, 1 and 2, can each produce a differentiated

non-storable product at zero marginal cost; each period’s product is sold in wholesale

markets to retailers indexed by i ∈ I. In this application, we assume that there

are three or more retailers, i.e. the index set I has at least size 3. Manufacturers

and retailers have zero reservation profits. Retailers sell the products in retail markets

operating à la Bertrand. If the retail price of product j (i.e. produced by manufacturer

j, irrespective of which retailer sells it) is pj ≥ 0 and the other product is priced at
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p` ≥ 0, then the consumer demand function for product j is

Qj = Dj(p`, pj, θ) = 1 + θp` − (2 +
√
p`)pj, (1)

where θ ∈ {1, 2}. Every player knows that the state θ, which we can interpret as ground

information about demand shocks, takes the values 1 and 2 with equal probability

independently across periods. In this application, we assume that the realization of

the state is fully observable to all retailers, but is never revealed to manufacturers. In

the demand function for product j in (1), p` interacts with both θ and pj. As shown

below, this makes it necessary for manufacturer ` to know both θ and pj (or prices

charged to retailers) in order to effectively punish manufacturer j.

Manufacturers and retailers are all long lived and they maximize the discounted sum

of their respective per-period profits using a common discount factor δ. We assume

that there is a public correlation device available at the start of each period to permit

(independent) randomization over mechanisms.

We now describe sales in the wholesale market from manufacturers to retailers. At

the beginning of each period, each manufacturer j offers a one-period contract. Any

contract comprises a set Mij of messages that retailer i can send to manufacturer j,

with Mj defined as ×i∈IMij. No restrictions are imposed on the complexity of the

message spaces and what information it can contain. Let γij : Mj → R+ be the price

paid by retailer i to manufacturer j as a function of the messages sent by all agents

to j. Let Γj be the set of all possible contracts for manufacturer j. Any contract in

this set commits him to a profile of prices (pij)i∈I , one charged to each retailer, as a

function of the messages from the retailers, with the understanding that retailers can

buy any amount at the offered prices. Motivated by industry practices, we also assume

that retailers sell the product at the price that incorporates a standard industry mark-
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up ∆, say ∆ = 0.1 (i.e., 10%), on the wholesale price.2 Here is our assumption on

information: Contracts and actions (i.e., prices) become public information at the end

of each period, but messages and states are never revealed.

2.1 Equilibrium characterization

The worst punishment that can be inflicted on each retailer i is equal to zero because a

retailer can be effectively excluded: Both manufacturers choose contracts in which the

price charged to the punished retailer regardless of the messages sent is so high that

she cannot sell any products.

How about the worst punishment that the other players can inflict on manufacturer

j? We need to know this to derive j’s worst equilibrium utility wj, which in turn is

key to deterring deviations by j. The simplest contract that manufacturer j can offer

to retailers is a fixed action (pij)i∈I . A fixed action can be thought of as a constant

contract, and manufacturer j cannot do worse with more complex contracts than he

does with fixed actions. We shall show that manufacturer j’s worst equilibrium utility

is equal to the maximum utility he can reach with a fixed action.

To see this point, we introduce with some notation. Given a fixed action pj :=

(pij)i∈I of manufacturer j, the retailer (or retailers) who receives product j at the

lowest price from manufacturer j supplies product j to the whole local market that

operates à la Bertrand. Given pj, let

p◦j(pj) := min {pij : i ∈ I} .

Suppose that each manufacturer ` 6= j asks each agent to report just two pieces of

information–(i) j’s action, and (ii) the state of the local market, i.e. the value of θ.

2For simplicity, we take the standard industry mark up as given but this too can be incorporated
into the equilibrium outcome.
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If more than a half of retailers report the same action pj and state θ, manufacturer

` takes {pj, θ} as manufacturer j’s true action and state.3 Since pj and θ are fully

observable to retailers and there are three or more retailers, reporting truthfully is an

equilibrium with majority rule. We refer to these as extended direct mechanisms

with majority rule.

Then, for every {pj, θ}, the worst punishment manufacturer ` can inflict on j is to

choose pi` = p∗`(pj, θ) for all i ∈ I4 to minimize the demand for product j, i.e.,

p∗`(pj, θ) ∈ arg min
p`

Dj

(
(1 + ∆) p`, (1 + ∆) p◦j(pj), θ

)
.

The solution is unique and it is

p∗`(pj, θ) =
1

1 + ∆

(
(1 + ∆) p◦j(pj)

2θ

)2

for all {pj, θ}.

Note that in his extended direct mechanism, manufacturer ` chooses p∗`(pj, θ) when

more than a half of retailers report {pj, θ}.

This implies that if manufacturer j were restricted to offer only a fixed price, then

the maximum utility he could achieve when he was punished would be

wj := max
pj

{
p◦j(pj)× Eθ

[
min
p`

Dj((1 + ∆) p`, (1 + ∆) p◦j(pj), θ)

]}
3What matters in pj = (pij)i∈I is the lowest price charged to retailers. Therefore, instead of

asking retailers to report pj , manufacturer `’s extended direct mechanism can ask retailers to report
p◦j (pj) = min {pij : i ∈ I}.

4Since every retailer can purchase product ` at the same price from manufacturer `, they supply
equal quantities to the market for product `.
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The definition of p◦j(pj) implies that

wj = max
pj

{
pj × Eθ

[
min
p`

Dj((1 + ∆) p`, (1 + ∆) pj, θ)

]}
(2)

= max
pj

{
pj ×

[
1− 2.2pj −

3.63

8
p2
j

]}
(3)

The objective function in (3) is strictly concave in pj ≥ 0. The value of wj is 0.1088

and it is reached when manufacturer j charges the price of 0.21321 to each retailer.

Subsequently, the consumer price becomes 0.234531.

Since a fixed action can be thought of as a constant contract, manufacturer j’s

utility cannot go below wj in a phase where he is punished when he can use any

arbitrary contract in Γj. How much higher can it be? This is a hard question to

answer directly as we cannot simply list all possible contracts. Our Theorem 1 shows

that even when we do not impose any exogenous restrictions on the complexity of

mechanisms, manufacturer j cannot do any better using non-constant mechanisms

when he is punished. Thus the complexity of contracts is significantly pared down.

In this application, we highlight some of the key ideas that permit such a simplifi-

cation. Suppose that manufacturer j offers any arbitrary contract at the beginning of

a period when he is being punished. Given such a contract γj =
{

(γij)i∈I
}

, let

γj(Mj) :=
{

(γij (mj))i∈I : mj ∈Mj

}
be the image set of γj, so it includes all actions (price vectors) that can be induced

from γj using all permitted messages. Now suppose that retailers are instructed to

always send the messages m×j =
(
m×ij
)
i∈I such that it induces (γij

(
m×j
)
)i∈I = p×j (γj),
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where

p×j (γj) ∈ arg min
pj∈γj(Mj)

{
p◦j(pj)× Eθ

[
min
p`

Dj((1 + ∆) p`, (1 + ∆) p◦j(pj), θ)

]}
.

Such communication behavior always induces p×j (γj) from γj, so for manufacturer

j, offering contract γj to retailers is equivalent to offering fixed action p×j (γj). All

retailers report p×j (γj) and the true state θ to manufacturer ` whose extended direct

mechanism then chooses pi` = p∗`(p
×
j (γj), θ) for all i ∈ I.

Such a communication is enforceable if retailers are sufficiently patient (δ → 1).

Because the contract and action are observable at the end of the period, the other

manufacturers observe manufacturer j’s contract γj and action pj at the end of period.

If pj 6= p×j (γj), then they know that at least one retailer has deviated from such com-

munication. This retailer can then be punished in the repeated game: manufacturers

charge so high a price to this retailer that she cannot sell any products. This suffices

to deter deviation by retailers from a phase in which a manufacturer is being pun-

ished. Even when the identity of the deviating retailer is unknown, manufacturers can

join forces to punish each retailer with equal probability; each retailer faces a positive

probability of loss of the opportunity to make positive profits based on mark-up.

This implies that retailers block any information transmission to manufacturer j

and that they completely neutralize the effectiveness of more complex contracts than

fixed actions. In this way, manufacturer j’s utility can be lowered to wj in a phase

where he is punished even if he can use any complex contracts. Importantly retailers

do not need to describe γj directly but only j’s action to manufacturer `, so extended

DMs are free from the infinite regress problem.
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2.2 Failure of the Revelation Principle

What would be each manufacturer’s worst equilibrium payoff when manufacturers are

restricted to offer only direct mechanisms as in McAfee (1993)? Manufacturer j’s direct

mechanism is πj := {(πij)i∈I} with πij : {1, 2}3 → R+ specifying the price for retailer

i as a function of all retailers’ messages on the state.

Suppose that manufacturer j offers a direct mechanism in the phase where he is

punished for his past deviation. Applying the logic described earlier, if retailers are

sufficiently patient, they can be enforced to block the transmission of any information

on the state so that they always induce the same price vector from menufacturer j’s

direct mechanism regardless of the state. Therefore, manufacturer j cannot do any

better with a direct mechanism than he does with a fixed price.

Since there are three retailers, the incentive compatibility has no bite and hence

the state can be revealed truthfully when the strict majority rule is applied to a direct

mechanism. Therefore, manufacturer ` can implement any price vector p` = (p1
` , p

2
`)

for every retailer with a direct mechanism, where pθ` is `’s price in state θ ∈ {1, 2}.

Given manufacturer `’s price vector p` = (p1
` , p

2
`), manufacturer j chooses a fixed

price pj(p`) that maximizes his expected profit in the phase where he is punished:

pj(p`) ∈ arg max
pj∈R+

pj × Eθ
[
Dj((1 + ∆) pθ` , (1 + ∆) pj, θ)

]
Then, manufacturer ` chooses p` = (p1

` , p
2
`) that minimizes

pj(p`)× Eθ
[
Dj((1 + ∆) pθ` , (1 + ∆) pj(p`), θ)

]
.
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In this way, we can derive the worst equilibrium profit for principal j:

wdj = min
(p1` ,p2`)∈R2

+

max
pj∈R+

pj × Eθ
[
Dj((1 + ∆) pθ` , (1 + ∆) pj, θ)

]
= 0.1111

wdj is reached when manufacturer `’s choose the direct mechanism that implements

(p1
` , p

2
`) = (0.12089, 0.060449) by retailers’ truth telling, and manufacturer j best re-

spond to it by choosing pj = 0.2198.

Using the standard arument of the folk theorem, one can show that any SCF f ∈ F

is the outcome of a PBE of (G,Π)∞(δ) for high δ if, for all j ∈ {1, 2} and ` 6= j,

Eθ [Dj((1 + ∆) fj (θ) , (1 + ∆) f` (θ) , θ)× fj (θ)] > wdj .

As one can see, manufacturer j’s worst equilibrium payoff wdj = 0.1111 in competing

direct mechanisms is strictly higher than his worst equilibrium payoff wj = 0.1088 in

competing complex mechanisms. This implies that the Revelation Principle does not

hold. The failure of the Revelation Principle is not caused by the restriction to direct

mechanisms off the equilibrium path because a deviating manufacturer cannot do any

better with a direct mechanism or any more complex mechanism than he does with a

fixed action. It fails because the non-deviating manufacturer cannot punish the devi-

ating manufacturer with a direct mechanism as severely as he does with an extended

direct mechanism. Why? With a direct mechanism, the non-deviating manufacturer

condition the implementation of his price only on the state but not on the deviating

manufacturer’s price.

If manufacturers are restricted to offer only constant contracts (i.e., fixed prices),
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then manufacturer j’s worst equilibrium payoff w◦j is even higher than wdj = 0.1111:

w◦j = min
p`∈R+

max
pj∈R+

pjEθ [Dj((1 +4)p`, (1 +4) pj, θ)] = 0.1114. (4)

When manufacturer ` uses a constant contract, he does not use any information

retailers have when punishing manufacturer j. The more information the non-deviating

manufacturer can exploit from retailers, the more severely he can punish the deviating

manufacturer (w◦j > wdj > wj). However, wj is the lowest possible equilibrium payoff

even if there are no restrictions on mechanisms manufacturers can use.

3 A model of repeated contracting competition

Motivated by the duopoly model, we now offer a three-stage description of a more

general model of contracting competition over time. First, we describe the underlying

game, which doesn’t include contracts. Second, we add contracts to it to obtain the

stage game. Third, we describe the repeated game and, in particular, what is

observable.

Underlying game. Principals and agents, respectively, comprise the sets J :=

{1, . . . , J} and I := {J + 1, . . . , J + I}. We assume that there are multiple princi-

pals and multiple agents (i.e., J ≥ 2 and I ≥ 2). In most parts we assume that

I ≥ 3, but Section 5.2 shows that our results go through with I = 2. Each princi-

pal j has a finite set5 Aj of actions, with typical action αj. A profile of actions is

α = (α1, . . . , αJ) ∈ A := ×j∈JAj and A−j := ×k 6=jAk.

Each agent i is informed about her type θi drawn from a finite set Θi according to

5Finite type and action spaces are not critical for our results: With a modicum of technicalities
we can deal with a compact set of actions and a countable type-space.
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a distribution µi; the profile of types θ = (θJ+1, . . . , θJ+I) is drawn from Θ := ×i∈IΘi

according to the joint distribution µ = ×i∈Iµi. If types are perfectly correlated (i.e.,

θi = θi′ for all i, i′ ∈ I), then it is the case of common information, i.e. complete

information among agents; otherwise we say the model is one of private information.

In both models principals have no information about the type(s). In our example with

manufacturers and retailers, θi is the private information that retailer i knows about

the state in the retail market.

The utility function for player ` (principal or agent) is u` : A×Θ→ R; utilities are

uniformly bounded by u < ∞, i.e. |u` (α, θ)| < u for all α ∈ A, all ` ∈ I ∪ J , and all

θ ∈ Θ. All this information is encapsulated in the underlying game:

G :=
(
J ; I; (Aj)j∈J ; (Θi)i∈I ; (µi)i∈I ; (u`)`∈I∪J

)
. (5)

Stage game. Fix an underlying game G as in (5), and for each j ∈ J fix a collection

of sets {Mij|i ∈ I} and a set Γj that comprises continuous mappings γj from Mj :=

×i∈IMij to Aj, where Mij is the set of messages that agent i can send to principal

j. The set of mechanisms available to principal j is Γj, with typical element γj. We

assume that Γj and Mj are compact for all j ∈ J . Note that random mechanisms are

allowed. We impose no exogenous restrictions on the complexity our communication

mechanisms permit: Mechanisms in Γj may allow agents to report not only their own

types, but also mechanisms offered by the other principals, and so on.

The stage game (G,Γ) is the game with the following timing of moves:

1. Each principal j simultaneously offers a mechanism γj from Γj.

2. After observing the profile of mechanisms γ = (γ1, . . . , γJ) offered from Γ :=

×j∈JΓj, each agent sends private messages, one to each principal, without ob-

serving others’ messages; agent i’s message to j is mij ∈Mij.
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3. A principal’s action is determined by his mechanism, given the messages he re-

ceives, so that principal j takes action γj(mj) ∈ Aj when he receives the profile

of messages mj := (mij)i∈I ∈Mj.

4. Finally, each player ` ∈ I ∪J earns the stage utility u` (γ1 (m1) , . . . , γJ (mj) , θ).

The following assumption is maintained throughout: messages from agent i to

principal j are private, i.e. it is not observable by other players, principals or agents.

A direct mechanism (DM) πj : Θ → Aj for principal j is a special mechanism

where the set of messages that each agent i can send to principal j is simply i’s type

space Θi. Let Πj be the set of all possible direct mechanisms for principal j and

Π := ×j∈JΠj. We assume that Γj is bigger than Πj (Γj < Πj) for all j ∈ J .6

Repeated game. We now describe the infinitely repeated game (G,Γ)∞ (δ).7 It

involves playing the stage-game (G,Γ) at each time t ∈ N, with a common discount

factor δ ∈ (0, 1) across periods. At the start of each period, each agent i’s type is drawn

from the full support distribution µi independently of all past types and the current

types of the other agents (hence the joint distribution is the product of the marginals,

i.e., µ = ×i∈Iµi).

In each period t, a public correlation device (PCD) produces a continuous signal

ωt ∈ [0, 1] from a probability distribution P , independent across periods. All players

observe it before principals offer their mechanisms. Players can condition their behavior

on the realization of the PCD, which is part of the history.8 So, principal j can offer

6Formally, Γj < Πj if there exists an embedding ηj : Πj → Γj . It implies that there are more
mechanisms in Γj than in Πj . We will also assume later that Γj is bigger than the set of principal j’s
extended DMs that ask agents to report their types and the punished principal’s actions.

7We adopt the following notational convention: If κ is a variable in the stage game, we denote its
period t value by κt, with the understanding that t is a superscript and not an exponent. When it
does not create confusion, we drop the superscript t for notational simplicity.

8While public correlation is normally assumed in repeated games, it is not trivial to show when it
may be dispensed with (see Fudenberg and Maskin (1991) and Dasgupta and Ghosh (2016)).
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a mechanism γtj ∈ Γj conditional on the realization of the PCD.

At the end of each period t, both agents and principals observe period-t mechanisms

offered and period-t actions chosen. Even when only agents can observe mechanisms

and actions, our results go through if our model allows agents to send cheap talk mes-

sages to principals at the end of each period. (See Section 5.3 for details). Therefore,

the only substantive assumption is that agents learn the actions taken given a profile

of mechanisms offered by principals.

Starting with the null history h0, agent i’s period-t history hti is constructed from

her period-(t − 1) history hti according to the formula hti = ht−1
i ◦

(
γt, αt,mt

i, θ
t
i, ω

t
)
,

where ◦ denotes concatenation and mt
i := (mt

ij)j∈J . Principal j’s period-t private

history htj is constructed from his (t− 1)-period history according to the formula htj =

ht−1
j ◦ (γt, αt,mt

j, ω
t) with mt

j := (mt
ij)i∈I . The (average) discounted utility of player

` ∈ I ∪ J from period τ onwards is (1− δ)
∑

t≥τ δ
t−τu`

(
αt, θt

)
.

Our solution concept is perfect Bayesian equilibrium (PBE) defined in Fudenberg

and Tirole (1991); see also Watson (2017). It imposes sequential rationality and Bayes’

rule wherever possible; in other words, if, under the equilibrium strategies, an infor-

mation set h′ is off path but becomes on path when we condition on a subgame, then

beliefs at h′ are determined by applying Bayes’ rule conditional on the said subgame

being reached.9 Furthermore all players share a common belief about any other player,

and no player signals what he does not know.

3.1 Some comments on the model

First, why do we consider only short-term contracts? From a technical standpoint noth-

ing would change if we were to allow finite multi-period contracts. So effectively what

we are doing is to rule out infinite-horizon contracts. Since contracts are ultimately

9Mailath (2020) calls this “almost perfect Bayesian equilibrium”.
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based on laws, which themselves change in response to other forces (political, socio-

logical etc.), it seems impracticable or inefficient to write infinite-horizon contracts.

Short-run contracts can be also be thought of as a simple way to permit renegotiation

in a decentralized market.

Second, what are actions in our model? This depends on the specific application we

consider. In the example with manufacturers and retailers, principal (manufacturer)

j’s action aj is aj = (pij)i∈I , a profile of prices charged to retailers (agents). In

competing auctions, where each seller j is endowed with one unit of a good in each

period, seller j’a action is a profile of pairs of monetary transfers and the probability

of winning the object aj = [(tij)i∈I , (qij)i∈I ], one for each bidder i with
∑

i∈I qij = 1.

In a problem with final good producers (principals) and intermediate good suppliers

(agents), final good producer j’s action is aj = [(tij)i∈I , (qij)i∈I ], a profile of pairs of

payments and quantities, one for each supplier i. In loan contracting, the bank j’s

action is aj = [(pij)i∈I , (qij)i∈I ], a profile of pairs of loans and repayments conditional

on a project’s success, one for each entrepreneur i.

Note that we do not explicitly model agent i’s effort. However, depending on the

application, it is included in the notion of the principal’s actions. For example, if an

agent’s effort xi is decomposable with respect to principals, i.e., xi = (xi1, . . . , xiJ) and

is also contractible, then (xij)i∈I can be incorporated into the model as part of principal

j’s action. For example, in the problem with final producers and intermediate good

suppliers or in loan contracting, (qij)i∈I can be thought of as the profile of principal j

specific components of agents’ effort. This saves us the trouble of explicitly modelling

an agent’s effort
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4 Incentive compatibility

Repetition with patient players allows us to relax incentive compatibility because an

agent’s punishment can in some cases be deferred. To develop this idea further, we

introduce some notation. Given a profile of DMs π = (π1, . . . , πJ), the expected stage-

game utility of agent i of type θi who reports θij to each principal j, when the other

agents report truthfully, is

Eµ−i
[ui (π1 (θi1, θ−i) , . . . , πJ (θiJ , θ−i) , (θi, θ−i))] ,

where Eµ−i
is the expectation operator with respect to the probability distribution µ−i

over Θ−i.

We say that a profile of DMs π = (π1, . . . , πJ) satisfies unconstrained incentive

compatibility (UIC) if for all i ∈ I and all θ = (θi, θ−i) ∈ Θ, we have

Eµ−i
[ui (π (θ) , θ)] ≥

Eµ−i
[ui (π1 (θi1, θ−i) , . . . , πJ (θiJ , θ−i) , θ)] , ∀ (θi1, . . . , θiJ) ∈ (Θi)

J , (6)

where π (θ) := (π1 (θ) , . . . , πJ (θ)). Let ΠU be the set of all profiles of DMs satisfying

UIC.

Given a profile of DMs, agents’ type messages induce a profile of actions that carries

some information about the messages sent by agents. In particular, some type messages

where only a single agent lies may be detected when they trigger an off-path action

profile. However, in the one-shot game this detection comes too late to punish the

deviating agent; this is why UIC is used in the one-shot game to prevent all possible

lies. However, in the repeated game punishments for such lies can be deferred. For

any agent i in the repeated game, incentive compatibility thus does not need to be
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imposed over type messages by an agent i that with positive probability lead to a

profile of actions that can arise only when i lies. We illustrate this weaker notion,

called Constrained Incentive Compatibility (CIC), using the example below.

Example 1 There are four players. Players 1 and 2 are principals and players 3 and

4 are agents. The first agent’s type is either θ3 or θ′3 and the second agent’s type is

either θ4 or θ′4. Suppose that principals 1 and 2 offer DMs π1 and π2 respectively:

π1 (θ3, θ4) = α1, π2 (θ3, θ4) = α′2,

π1 (θ3, θ
′
4) = α1, π2 (θ3, θ

′
4) = α2,

π1 (θ′3, θ4) = α′1, π2 (θ′3, θ4) = α′2,

π1 (θ′3, θ
′
4) = α′′1, π2 (θ′3, θ

′
4) = α′2.

The table below shows the action profiles induced by agents’ type messages. Rows corre-

spond to agent 1’s message profiles (one for each principal) whereas columns correspond

to agent 2’s message profiles.

(θ4, θ4) (θ4, θ
′
4) (θ′4, θ4) (θ′4, θ

′
4)

(θ3, θ3) (α1, α
′
2) (α1, α2) (α1, α

′
2) (α1, α2)

(θ3, θ
′
3) (α1, α

′
2) (α1, α2) (α1, α

′
2) (α1, α

′
2)

(θ′3, θ3) (α′1, α
′
2) (α1, α2) (α′′1, α

′
2) (α′′1, α2)

(θ′3, θ
′
3) (α′1, α

′
2) (α′1, α

′
2) (α′′1, α

′
2) (α′′1, α

′
2)

The set of action profiles induced by truthful reports is

A((π1, π2) , ∅) := {(α1, α
′
2) , (α1, α2) , (α′1, α

′
2) , (α′′1, α

′
2)} .

Let ΠC be the set of all profiles of DMs satisfying CIC. Note that ΠU ⊂ ΠC.

Given the truthful type reporting by the first agent (player 3), the second agent’s

20



inconsistent type report (θ4, θ
′
4) induces (α1, α2) and (α′1, α

′
2) when the first agent’s

truthful type reports are (θ3, θ3) and (θ′3, θ
′
3) respectively. Because (α1, α2), (α′1, α

′
2) ∈

A((π1, π2) , ∅), the second agent’s inconsistent type report (θ4, θ
′
4) cannot be detected

by observing the action profiles. Similarly, the second agent’s inconsistent type report

(θ′4, θ4) cannot be detected by observing the action profiles.

Given the truthful type reporting by the second agent (player 4), the first agent’s

inconsistent type report (θ3, θ
′
3) induces (α1, α

′
2) for both possible profiles of the second

agent’s truthful reports (θ4, θ4) and (θ′4, θ
′
4). Because (α1, α

′
2) ∈ A((π1, π2) , ∅), the

other players cannot detect the first agent’s inconsistent type reporting by observing

(α1, α
′
2) at the end of the period. On the other hand, the first agent’s inconsistent

type report (θ′3, θ3) induces (α′1, α
′
2) and (α′′1, α2) when the second agent’s truthful type

reports are (θ4, θ4) and (θ′4, θ
′
4) respectively. Note that (α′′1, α2) /∈ A((π1, π2) , ∅) and it

cannot be induced by the second agent’s inconsistent type reports. Therefore, if (α′′1, α2)

is observed at the end of the period, players know that it is the first agent who lied.

Then, the first agent can be punished from the next period so that incentive compatibility

does not need to be imposed for the first agent’s inconsistent type report (θ′3, θ3).

We now crystallize the above example into a more general definition. Given a profile

of DMs π and a subset of agents S, let A(π, S) denote the set of all action profiles

induced when those outside S report their types truthfully while messages sent by

those in S are unrestricted. Clearly the set of action profiles when all agents tell the

truth is A(π, ∅) and satisfies A(π, ∅) ⊂ A(π, i) ∀i. Action profiles in the set

A(π, i) \ (∪k 6=iA(π, k)) =: AiL(π) (7)

arise only when i lies to at least one principal. The set Li (π) comprises message profiles

that i can send, one to each principal, so as to bring about actions in the set above in
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(7). Formally,

Li(π) :=

{
(θij)j ∈ (Θi)

J

∣∣∣∣∃θ−i ∈ Θ−i s.t.

(
π1 (θi1, θ−i) , . . . , πJ (θiJ , θ−i)

)
∈ AiL(π).

}

In words, Li (π) is the set of agent i’s type messages that have a positive prob-

ability of generating an action profile that reveals agent i as the unique agent who

deviated from truth telling when faced with π. Note that any consistent message pro-

file (θi1, . . . , θiJ) of agent i (i.e., θi1 = θi2 . . . = θiJ) is not in Li (π) even though it is a

lie. If a message profile (θi1, . . . , θiJ) is in Li (π), it is an inconsistent message profile

(i.e., θij 6= θij′ for some j, j′ ∈ J with j 6= j′).

As we shall show in our equilibrium characterization, messages in Li (π) can be

deterred because a positive probability of detection is enough. The notion below antic-

ipates this and does not impose incentive compatibility over type messages in Li (π).

Definition 1 A profile of DMs π satisfies constrained incentive compatibility

(CIC) under a type distribution µ if for all i ∈ I and all θ = (θi, θ−i) ∈ Θ, we have

Eµ−i
[ui (π (θ) , θ)] ≥ Eµ−i

[ui (π1 (θi1, θ−i) , . . . , πJ (θiJ , θ−i) , θ)]

∀(θi1, . . . , θiJ) ∈ (Θi)
J \ Li (π) . (8)

Given a profile of mechanisms γtj ∈ Γ in period t, agent i’s (pure) communication

strategy sti specifies an array of messages she sends to principals given her private

history up to period t− 1 and the period-t values of the public randomization device,

the mechanisms offered, and the types:

sti
(
ht−1
i , ωt, γt, θti

)
=
[
sti1
(
ht−1
i , ωt, γt, θti

)
, . . . , stiJ

(
ht−1
i , ωt, γt, θti

)]
∈Mi1 × · · · ×MiJ .
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Letting mt
ij

(
θti
)

:= stij
(
ht−1
i , ωt, γtj, γ

t
−j, θ

t
i

)
, principal j’s t-period DM is given by

πtj := γtj ◦ (mt
ij)i∈I . (9)

Definition 2 A PBE is called a constrained PBE (cPBE) if the profile of agents’

communication strategies induces CIC DMs from the mechanisms offered by principals

given any histories of agents.

At the end of Section 5.1, we explain why CIC is generally needed in the phase

where a player is punished. For that reason, we are interested in characterizing the set

of cPBE allocations in the model with two or more agents.

Section 5.4 discusses how to dispense with incentive compatibility on the equilib-

rium path where no one has previously deviated, over messages profiles that lead with

positive probability to an action profile that only reveals that some agent deviated, but

not the identity of the deviating agent. It also discusses the relation to the approach

that provides agent with the incentive compatibility by checking the frequency of mes-

sages over a block of periods (e.g., Jackson and Sonnenschein (2007), Renault, Solan,

and Vielle (2013)).

5 Equilibrium in the general model

This section presents the main results, offering an extended revelation principle as well

as an equilibrium characterization.

Let Π(γ) ⊂ ΠC denote the set of all profiles of CIC DMs that can be induced by all

profiles of agents’ equilibrium communication strategies given mechanisms γ offered by

principals in the phase where principal j is punished for his past deviation.10 Given γ,

10The equilibrium characterization in Theorem 1 shows that Π(γ) is non-empty.

23



principal j’s lowest possible stage utility is

uj (γ) := min
π∈Π(γ)

Eµ [uj (π (θ) , θ)] ,

where Eµ [·] is the expectation operator over Θ given the probability distribution µ.

Subsequently, principal j’s worst cPBE utility (i.e., the threshold value of principal j’s

cPBE utility), denoted by wCj , is

wCj := min
γ−j∈Γ−j

max
γj∈Γj

uj
(
γ−j, γj

)
. (10)

For agent i’s worst cPBE utility, note that in the phase where agent i is punished,

CIC cannot be enforced to agent i because she will report her type to increase her

current stage utility. Therefore, UIC is the notion of IC that needs to be imposed for

agent i. On the other hand, principals can enforce CIC to the other agents because

their deviation that is detectable with a positive probability can be deterred. Let ΠC (i)

be the set of all profiles of DMs that are UIC for agent i but CIC for the other agents,

that is a profile of DMs in ΠC (i) imposes IC to agent ` (6= i) only over the set of type

messages in (Θ`)
J \L` (π) while imposing IC to agent i over the set of type messages

in (Θi)
J . Agent i’s worst cPBE utility is

wCi := min
π∈ΠC(i)

Eµ [ui (π (θ) , θ)] . (11)

A (stage) allocation or social choice function (SCF) is a mapping f : Θ→4(A1 ×

· · · ×AJ) from type profiles to probability distributions over actions. The set of SCFs

is denoted by F . The set of deterministic SCFs is denoted by

F0 := {f ∈ F|f (Θ) ⊂ A} ⊂ F . (12)
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What stage-SCFs and utility profiles can we support in a cPBE of (G,Γ)∞ (δ)? We

say f ∈ F is strictly individually rational (SIR) (w.r.t. µ ∈ 4Θ) if each player ` gets

an expected utility above wC` :

Eµ [u` (f (θ) , θ)] > wC` for all ` ∈ I ∪ J . (13)

F0 is the set of deterministic SCFs. The smaller class of SCFs that also satisfy CIC is

written as FC0 ; these may not satisfy SIR. We now define the class of SCFs that are

SIR and result from picking a CIC SCF by observing the realization of the PCD:

FC (µ) :=
{
f ∗ ∈ 4FC0 |f ∗ is SIR w.r.t µ

}
.

The theorem below shows that any SCF f ∗ ∈ FC (µ) is supportable in a cPBE of

(G,Γ)∞ (δ), provided players are sufficiently patient. Note that any f ∗ ∈ FC (µ) is a

probability distribution over SCFs that are induced by profiles of CIC DMs. Each SCF

(i.e., each profile of DMs) in the support of f ∗ ∈ FC (µ) does not need to be SIR. As

in any repeated game, what matters is that the expected utility is above the threshold

even if the current period’s utility (after observing the PCD) isn’t.

5.1 Three or more agents

Suppose that principal j’s action is fixed at αj. A fixed action αj can be thought of

as a constant mechanism that always assigns αj regardless of agents’ messages. Given

αj ∈ Aj, let ΠC
−j(αj) be the set of all profiles of DMs for principals except j that are

CIC conditional on αj:

ΠC
−j(αj) :=

{
π−j ∈ Π−j| (π−j, αj) ∈ ΠC

}
.
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Lemma 1 below shows that wCj for all j ∈ J cannot be lower than

max
αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ [uj (π−j (θ) , αj, θ)] ,

which is principal j’s maximin utility when j strategically chooses a fixed action given

that the other principals will respond with CIC direct mechanisms conditional on j’s

action to punish j most severely.

Lemma 1 For every principal j ∈ J ,

max
αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ [uj (π−j (θ) , αj, θ)] ≤ wCj (14)

Proof. Suppose that principal j considers a choice of a mechanism off the path where

he is punished for his past deviation. Because the simplest mechanism he can choose

off the path is a constant mechanism, that is, a single action αj ∈ Aj, we have that

min
γ−j∈Γ−j

max
αj∈Aj

uj
(
γ−j, αj, θ

)
≤ wCj . (15)

Suppose that principals except for j are perfectly informed about an action αj principal

j chooses when j restricts himself to Aj. Conditional on each action αj that principal

j may take, the other principals cannot lower principal j’s utility below

min
π−j∈ΠC

−j(αj)
Eµ [uj (π−j (θ) , αj, θ)] .

It implies that

max
αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ [uj (π−j (θ) , αj, θ)] ≤ max

αj∈Aj

min
γ−j∈Γ−j

uj
(
γ−j, αj, θ

)
. (16)
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In addition, it is clear that

max
αj∈Aj

min
γ−j∈Γ−j

uj
(
γ−j, αj, θ

)
≤ min

γ−j∈Γ−j

max
αj∈Aj

uj
(
γ−j, αj, θ

)
(17)

(15), (16), and (17) lead to (14).

The value wCj is based on the profile of agents’ equilibrium communication strate-

gies that is the worst for principal j in the phase where he is punished for his past

deviation. The proof in Appendix A shows how to construct a profile of equilibrium

communication strategies that makes principal j no better off with any mechanism in

Γj if he is being punished, than he does with a single action in Aj and that also makes

the other principals perfectly informed about principal j’s action. As established in

Theorem 1, this makes wCj equal to the left hand side of (14). To show this, we utilize

the class of extended direct mechanisms that is only slightly more general than DMs.

Definition 3 (EDM) A mechanism ζj` : T` → A` offered by principal ` is said to be

an ‘extended direct mechanism’ (EDM) if

1. for some j 6= `, we have Ti` = Aj ×Θi and T` := ×i∈ITi` and

2. for any (α̃ji`, θ̃i`) ∈ Ti` for all i ∈ I, let α̃j` := (α̃ji`)i∈I be a profile of all agents’

messages on principal j’s action and θ̃` := (θ̃i`)i∈I a profile of all agents’ messages

on their types. Then,

ζj`(α̃
j
`, θ̃`) :=

 ϕj` (αj)
(
θ̃`

)
if ∃αj s.t. #

{
i : α̃ji` = αj

}
> I/2,

α` otherwise
, (18)

where ϕj` (αj) ∈ Πj and α` is some arbitrary action in A`

In principal `’s EDM ζj` offered off the path following principal j’s deviation, an

agent is asked to report (i) principal j’s action that she thinks he would take and (ii)
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her type. If a strict majority of agents report αj, ζ
j
` assigns a direct mechanism ϕj` (αj),

which then assigns principal `’s action ϕj` (αj)
(
θ̃`

)
when the profile of type messages

is θ̃` = (θ̃i`)i∈I . When there is no action reported by a strict majority of agents, ζj`

assigns a fixed action regardless of the type messages reported by agents.

Definition 4 A profile of EDMs ζj−j =
(
ζj`
)
`6=j is CIC if ϕj−j (αj) =

(
ϕj` (αj)

)
`6=j ∈

ΠC
−j(αj) for all αj ∈ Aj.

We now present our main theorem, Theorem 1. The standard full dimensionality

assumption (FD) that the set of expected utilities has the same dimension as the

number of players, i.e. dim
[
u
(
FC (µ)

)]
= J + I, allows us to design player-specific

punishments (See Fudenberg and Maskin, 1986). It packs three results in one. First,

there is the characterization of the CIC minmax value of a principal as the maxmin of

a restricted space. Second, there is the equilibrium characterization. Third, we offer

an extended revelation principle, which speaks to the kind of mechanisms that need

to be used; it is worth nothing that very simple mechanisms are needed, ones that are

closer in dimension to the types spaces than to arbitrary mechanisms.

Theorem 1 Consider i.i.d. types with distribution µ ∈ 4Θ. Under the standard full

dimensionality assumption on the expected utilities, we have that

wCj = max
αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ [uj (π−j (θ) , αj, θ)] ∀j ∈ J . (19)

Furthermore,

1. (Equilibrium Characterization) Any SCF f ∗ ∈ FC (µ) is the outcome of a

cPBE of (G,Γ)∞ (δ) for high δ.

2. (Extended Revelation Principle) To punish principal j all other principals

employ EDMs satisfying CIC, whereas j employs a fixed action, i.e. a constant
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mechanism; to punish agent i all principals offer DM satisying UIC for agent i

and CIC for the other agents; in other phases, there is no loss of generality if

principals offer DM satisfying CIC.

Proof. See Appendix A.

The two intermediate results are combined to lead up to Theorem 1, showing that

wCj and maxαj∈Aj
minπ−j∈ΠC

−j(αj) Eµ [uj (π−j (θ) , αj, θ)] are equal. The first intermedi-

ate result is to show how and what type of information principals can extract from

agents. They can freely extract any common information such as (i) what contract

principal j who is being punished has offered, (ii) what action agents are supposed

to induce from j’s contract, etc. This is because there are three or more agents. If

all agents report αj, any single agent’s deviation from αj cannot change principal `’s

DM away from ϕj` (αj). Therefore, truthful action reporting can be sustained. On the

other hand, they use CIC to extract agents’ private information. The second result is

to show that agents can be incentivized to not give any information to a principal who

is being punished.

To see how this is done, note that in the phase where principal j is punished, each

principal ` 6= j offers an EDM ζj` that implements ϕj` (αj) when a majority of agents

report αj as principal j’s expected action such that ϕj−j (αj) =
(
ϕj` (αj)

)
`6=j satisfies

ϕj−j (αj) ∈ arg min
π−j∈ΠC

−j(αj)

Eµ [uj (π−j (θ) , αj, θ)] . (20)

If principal j offers any complex mechanism γj in the phase where he is punished, let

agents send messages to principal j that induce gj
(
γj
)

such that

gj
(
γj
)
∈ min

αj∈γj(Mj)
Eµ
[
uj
(
ϕj−j (αj) (θ) , αj, θ

)]
. (21)
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Agents report αj = gj
(
γj
)
, together with their types, to non-deviating principals who

offer the EDMs. The crux in the proof of (19) in Theorem 1 is whether principals

can deter any agent’s unilateral deviation to induce an unexpected action other than

gj(γj). If an unexpected action (i.e., some action other than gj(γj)) is induced from

γj, principals know that at least one agent deviated. They may not know the deviating

agent’s identity. Nonetheless, an agent’s deviation to induce such an unexpected action

can be deterred if principals punish every agent with equal probability, 1/I even when

the identity of the deviating agent is not known.11.

If agent i conforms to induce gj
(
γj
)
, she will be rewarded after punishing principal

j is done. If agent i deviates but the other agents are punished instead, she will get

the same reward after punishing the other agents are done. If she deviates, she is

punished with probability 1/I and in this case she will lose the reward. Because this

loss happens with probability 1/I, agent i will not deviate if she is sufficiently patient.

(19) in Theorem 1 show how to express wCj in terms of incentive compatible DMs

and actions and how to implement it. In the phase where principal j is punished,

wCj is reached without loss of generality when all principals except for j offers the

EDMs ζj−j =
(
ζj`
)
6̀=j satisfying (20) and agents block any information transmission to

principal j. Consequently, in the phase where principal j is punished, he cannot do

any better with any mechanism than he does with a single action.

1 and 2 in Theorem 1 is established as follows. Suppose that f = (f1, . . . , fJ) in

the support of f ∗ ∈ FC (µ) is a SCF that needs to be supported. Each principal j

offers the DM πj = fj. As long as no principal deviates, agents truthfully report their

types. If a principal deviates, agents play a one-shot equilibrium, expecting that the

deviating principal will be punished from the next period. In phases where an agent

is punished or players stay after punishing a player, principals can also simply offer

11We partition the space (0, 1] into (i/I, (i+ 1)/I] for i = 0, 1, ..., I − 1. A PRD in the ith partition
at the start of period immediately following a deviation leads to all principals punishing agent i.
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incentive compatible DMs.

The extended revelation principle for the off-path mechanisms used in punishing a

principal for his past deviation is based on the profile of agents’ equilibrium commu-

nication strategies that is worst for the deviating principal. Only single actions are

required for the punished principal off the path following his deviation because agents

do not reveal any information to the punished principal regardless of his mechanism.

This makes the infinite regress problem of mechanisms play no role and agents only

need to report the action of the punished principal and their types to the other prin-

cipals who offer incentive compatible EDMs. Further, the incentive compatibility in

the EDMs is imposed only over agents’ type messages conditional on their messages

on the punished principal’s action but not the messages on the punished principal’s

action because truthful action reporting can be always enforced.

A natural question arises as to whether we can further relax CIC. For example, it

is tempting to remove IC over profiles of messages that lead with positive probability

to action profiles from which principals can infer that an agent deviated even though

the identity of the deviating agent may not be known. We cannot dispose of IC over

such message profiles off the path. Suppose that players went through phase IIi where

agent i was punished and that the game reached the final phase IIIi where all other

players, except for agent i, are rewarded after punishing her in phase IIi. If agent i

lies in this final phase and principals only know that at least one agent deviates but

not the identity of the deviating agent, they cannot simply punish every agent with

equal probability because that would, with positive probability, let agent i participate

in punishing other agents and reap the rewards forever after punishment is done. This

may trigger agent i’s deviation in this final phase if she is sufficiently patient. Therefore,

truth telling may not lead to a continuation equilibrium in the final phase and it is

not clear what kind of a non-truthful equilibrium will then arise in the final phase.

31



Depending on the non-truthful equilibrium that prevails in the final phase, the agent

may want to deviate on the path in the first place.

5.1.1 Example

There are two principals and three agents - A1 = {α1, α
′
1}, A2 = {α2, α

′
2}, Θ3 =

{θ3, θ
′
3}, Θ4 = {θ4}, Θ5 = {θ6}. Players 1 and 2 are principals and players 3, 4, and

5 are agents. The first agent’s type is either θ3 or θ′3 with equal probability, whereas

the second and third agents have no private information about their types because Θ4

and Θ5 are singletons. Players’ payoffs are given by the following tables, one for each

possible type of the first agent. The numbers in each cell represents players’ payoffs in

the order of players 1, 2, 3, 4, and 5.

θ = (θ3, θ4, θ5)

α2 α′2

α1 4,2,2,1,1 3,5,3,1,1

α′1 6,8,4,1,1 9,9,2,1,1

θ′ = (θ′3, θ4, θ5)

α2 α′2

α1 8,6,4,1,1 7,9,2,1,1

α′1 2,3,1,1,1 5,4,3,1,1

For ease of exposition, we consider only deterministic SCFs. For each principal j,

there are four possible DMs: Πj = {πj, π′j, πj, π′j}, where the four DMs are defined as

follows.

πj(θ3, θ4, θ5) = αj, πj(θ
′
3, θ4, θ5) = αj,

π′j(θ3, θ4, θ5) = α′j, π′j(θ
′
3, θ4, θ5) = α′j,

πj(θ3, θ4, θ5) = αj, πj(θ
′
3, θ4, θ5) = α′j,

π′j(θ3, θ4, θ5) = α′j, π′j(θ
′
3, θ4, θ5) = αj.

Because each principal has four DMs, there are sixteen profiles of DMs that prin-

cipals can offer. Given any profile of mechanisms, the first agent can report one of

four different type profiles in Θ3×Θ3 = {(θ3, θ3), (θ3, θ
′
3), (θ′3, θ3), (θ′3, θ

′
3)}. The notion
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of UIC imposes incentive compatibility over all possible type reports in Θ3 × Θ3 and

hence the set of profiles of UIC DMs is

ΠU = {(π1, π2), (π1, π
′
2), (π1, π

′
2), (π′1, π2), (π′1, π

′
2), (π′1, π2), (π1, π

′
2), (π′1, π2)}

Although (π′1, π2) and (π′1, π
′
2) are not UIC, they are CIC, and the set of profiles of

CIC DMs is

ΠC = {(π′1, π2), (π′1, π
′
2)} ∪ ΠU

For example, the table below show the the action profile induced by the first agent’s

type reports given (π′1, π2), where rows and columns correspond to the messages sent

to principals 1 and 2 respectively.

θ3 θ′3

θ3 α′1, α2 α′1, α
′
2

θ′3 α1, α2 α1, α
′
2

(π′1, π2) is not UIC but CIC. To see why it is CIC, note that the set of action profiles

induced by consistent type reports is A((π′1, π2) , ∅) = {(α′1, α2), (α1, α
′
2)}. Even though

IC is satisfied over consistent type reporting, (π′1, π2) is not UIC: If the first agent of

type θ′3 reports θ′33 to principal 1 but θ3 to principal 2 so that (α1, α2) is induced, her

payoff is 4 whereas her payoff is 2 when (α1, α
′
2) is assigned by truthful type reporting

to both principals. However, if we adopt the notion of CIC, we do not worry about such

an inconsistent type reports because (α1, α2) /∈ A((π′1, π2) , ∅). In fact, any inconsistent

type report results in an action not in A((π′1, π2) , ∅). We can also show that (π′1, π
′
2)

is CIC but not UIC.

The table below shows the expected payoffs for players 1, 2, and 3 (principal 1,

principal 2, and the first agent) given each profile of CIC DMs. The first eight profiles
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of DMs are UIC (and therefore CIC) and the last two profiles are only CIC but not

UIC.

π1, π2 π1, π
′
2 π1, π

′
2 π′1, π2 π′1, π

′
2 π′1, π2 π1, π

′
2 π′1, π2 π′1, π2 π′1, π

′
2

P1 6 5 5.5 4 7 7.5 6 7 6.5 8.5

P2 3 7 5.5 5.5 6.5 6 4.5 7 8.5 7.5

P3 3 2.5 3.5 2.5 2.5 3.5 3 4 3 2.5

Since the second and third agents have a single type message and their payoffs are

always one, there is no need to consider their incentive compatibility. Which profiles

of CIC in ΠC can be supported as an equilibrium allocation? To identify, we need to

compute the minmax value for principals 1 and 2, and the first agent.

Let us first compute principal 1’s pure minmax value with respect to complex mech-

anism via his action-DM pure minmax value. Fixing principal 1’s action at α1, the

set of principal 2’s DMs that are CIC conditional on α1 is ΠC
−1 (α1) = {π2, π

′
2, π

′
2}.12

Given α1, DMs in ΠC
−1 (α1) generate the expected payoffs for principal 1 as follows:

Eµ[u1(π2 (θ) , α1, θ)] = 6, Eµ[u1(π′2 (θ) , α1, θ)] = 5, Eµ[u1(π′2 (θ) , α1, θ)] = 5.5. There-

fore, if principal 1 plays α1, π
′
2 minimizes principal 1’s expected payoff among all DMs

in ΠC
−1 (α1). Therefore, in principal 2’s EDM, ϕ1

2 (α1) = π′2.

Similarly, ΠC
−1 (α′1) = {π2, π

′
2, π

′
2}. π2 minimizes principal 1’s expected payoff

among all DMs in ΠC
−1 (α′1) and it is Eµ[u1(π2 (θ) , α′1, θ)] = 4. Therefore, in princi-

pal 2’s EDM, ϕ1
2 (α′1) = π2Because Eµ[u1(π2 (θ) , α′1, θ)] = 4 < Eµ[u1(π′2 (θ) , α1, θ)] = 5,

it follows that

wC1 = Eµ[u1(π′2 (θ) , α1, θ)] = 5.

12With two principals in this example, principal 2 is only one non-deviating principal when principal
1 has deviated. In this case, the set of principal 2’s CIC DMs conditional on principal 1’s action α1

is the same as the set of principal 2’s UIC DMs conditional on principal 1’s action α1.
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No such algorithm exists in the one-shot model. Similarly, for principal 2,

wC2 = 4.5.

When the first agent 1 is punished, we need to consider UIC for her. Since the

second and third agents have a single message, this implies that the minmax value for

agent 1 is

wC3 := min
π∈ΠC(3)

Eµ [u3 (π (θ) , θ)] = min
π∈ΠU

Eµ [u3 (π (θ) , θ)] = 2.5

With a slight abuse of notation, the set of strictly individually rational (deterministic)

SCFs is

{(π1, π
′
2), (π′1, π2), (π′1, π2), (π′1, π2)}

Each of them can be supported as an equilibrium allocation since players 1, 2, and 3

receive expected payoffs higher than their minmax value, wC1 , w
C
2 , and wC3 respectively.

5.2 Two agents

The assumption of three or more agents makes it easy to force agents to truthfully

report principal j’s action to other principals when the latter offer EDMs in the phase

where principal j is punished for his past deviation. Given the majority rule employed

in EDMs, a single agent’s deviation from true action reporting has no effect when the

remaining agents all report the same true action.

Suppose that there are only two agents. Consider a phase where each principal `

(6= j) offers the EDM ζj` defined in (18) to punish principal j. If two agents’ reports

on j’s action to principal ` are not consistent, principal ` knows that at least one agent

has deviated. However, the other principals do not know that because agents’ action
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reports to principal ` are not observable by them. In order to punish an agent together

with the other principals, principal ` needs to let them know that at least one agent

has sent to him a false message. The following corollary shows that Theorem 1 holds

with I = 2 by identifying a sufficient condition for that.

Corollary 2 If

A`\{ϕj` (αj) (θ) ∈ A` : αj ∈ Aj, θ ∈ Θ} 6= ∅. (22)

is satisfied for every principal ` ∈ J and every j ∈ J \{`} then Theorem 1 holds with

I = 2.

Proof. See Appendix B.

We believe that the sufficient condition is very weak because it is satisfied as long

as each principal’s action set is large so that principal ` does not need to use all of

his actions in punishing principal j. Let us go back to the example of manufacturers

and retailers in Section 2. Manufacturer ` charges the price of 0.21321 to every retailer

in a phase where manufacturer ` is punished. Therefore, (22) is satisfied. Manufac-

turer ` can charge any other price to signal if retailers send inconsistent messages on

manufacturer j’s action. Such a price becomes the perfect signal on retailers’ inconsis-

tent messages on manufacturer j’s action. From the next period, both manufacturers

exclude each retailer from the market with equal probability as punishment.

5.3 Observability

We have assume that, at the end of each period, mechanisms and actions are observable

to both principals and agents. However, it is not necessary.

First, consider the case with three or more agents. For characterization and imple-

mentation of equilibrium allocations without imposing the observability of mechanisms
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and actions for principals, we modify the model so that agents are allowed to send pri-

vately observed cheap talk messages from P(I∪J ) (the power set of I∪J ) to principals

at the end of every period.

Corollary 3 Suppose that principals do not observe the other principals’ mechanisms

and their actions, whereas agents observe mechanisms with probability one but actions

with positive probability λ > 0. Given the availability of privately observed cheap talk

messages from P(I ∪ J ) at the end of each period, Theorem 1 holds with I ≥ 3.

Proof. See Appendix C.

We can also extend Theorem 1 to the case with two agent without imposing the

observability of mechanisms and actions for principals.

Corollary 4 Suppose that principals do not observe the other principals’ mechanisms

and their actions, whereas agents observe mechanisms with probability one but actions

with positive probability λ > 0. If (22) is satisfied for every principal ` ∈ J and every

j ∈ J \{`} and each agent can announce a publicly observable cheap talk message from

P(I ∪ J ) at the end of each period, Theorem 1 holds with I = 2

Proof. See Appendix D.

5.4 Relaxing incentive compatibility

Our folk theorem and the extended revelation principle are based on our notion of

incentive compatibility (CIC). Above we argued that off the path, we cannot dispense

with incentive compatibility off the equilibrium path over message profiles that must be

imposed over message profiles that lead, with positive probability, to an action profile

that only reveals that some agent deviated, but not the identity of the deviating agent.
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The reason is that we need to deter an agent to further deviate from her punishment

after her initial deviation. Therefore, CIC is the proper notion in constructing the

worst PBE payoffs.

Contrary to the incentive compatibility imposed off the path, we can dispense with

incentive compatibility on the equilibrium path where no one has previously deviated,

over messages profiles that lead with positive probability to an action profile that only

reveals that some agent deviated, but not the identity of the deviating agent. Suppose

that given the realization of the PCD, principals offer a profile of DMs π that impose

incentive compatibility only over Bi (π) for all i on the equilibrium path. Recall that

A(π, ∅) is the set of actions that can be induced from π by agents’ truthful type

messages. Define Bi (π) ⊂ (Θi)
J as the set of all profiles of type messages of agent i,

one message to each principal, that lead to an action profile in A(π, ∅) irrespective of

the types of the other agents as long as the others report truthfully:

Bi (π) :={
(θi1, . . . , θiJ) ∈ (Θi)

J | [π1 (θi1, θ−i) , . . . , πJ (θiJ , θ−i)] ∈ A(π, ∅) ∀θ−i ∈ Θ−i

}

If agent i sends a message profile outside Bi (π), then she may induce an ‘unexpected’

action profile, which could not have been induced under truthful type reporting. If

only agent i could have induced this unexpected action profile by sending a profile of

messages outside her Bi (π), then i is singled out for punishment.

However, even if principals do not know the identity of the deviating agent (because

two or more agents could have caused this by some unilateral deviation), they can pick

out any agent i with equal probability and punish her before moving on to Phase

III. Following the notation in the appendix, let Lki denote agent i’s expected average

life-time payoff in the phase where player k is punished. If agent i deviates to lie
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on the equilibrium path, her expected average life-time payoff cannot be greater than

(1− δ)u+δ
[
(1− p∗) vi + p∗

I

∑J+I
k=J+1 L

k
i

]
, where p∗ is the maximum probability that an

agent’s lie is detected and u is the maximum utility. As δ → 1, this payoff approaches

(1− p∗) vi + p∗v′i + p∗ I−1
I
ε. This is less than vi given that v′i + ε < vi. Since vi is the

equilibrium payoff for agent i, a sufficiently patient agent i will not deviate to a lie on

the path.

It worth mentioning that Jackson and Sonnenschein (2007) have shown how a single

mechanism designer can ‘link’ several decisions together by giving each agent a ‘budget’

of messages that encompasses all decisions, and thereby impose some ‘statistical checks’

on messages, instead of directly providing incentives through payoffs of each individual

period. Similar intuition is found in the dynamic cheap-talk game between a single

sender and single receiver (Renault, Solan, and Vielle (2013)).

The key idea is that in a fully dynamic setting, we divide equilibrium play into

several ‘blocks’ - within each block the mechanism designer or principal follows the

sender’s suggestion until the sender exhausts her budget; thereafter the message is

replaced by a fictitious message in a deterministic fashion so that the budget holds

exactly at the end of the block. This logic does not directly carry over to our model:

the crux is that messages are private between an agent and a principal, and neither the

other agents nor the other principals know whether agent i has exhausted her quota of

messages to principal j.

6 Conclusion

Our paper studies dynamic contracting competition among principals, putting con-

tracting processes between multiple principals and multiple agents to the forefront of

equilibrium analysis. For the characterization and implementation of equilibrium allo-
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cations, the extended revelation principle only needs to be based on the extreme profile

of agents’ equilibrium strategies that is worst for a principal in a phase where he is

punished for his past deviation. We construct them regardless of the complexity of

contracts. The key insight into our results is that contrary to what the term “extended

revelation principle” might suggest, agents block any information transmission to a

principal in a phase where he is punished. This phenomenon underlies the extended

revelation principle and facilitates the characterization and implementation of equilib-

rium allocations using straightforward contracts, effectively circumventing the infinite

regress problem.
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Appendix

A Proof of Theorem 1

We first prove (19) in Theorem 1. Suppose that principal j offers a mechanism γj ∈ Γj

in the phase where he is punished for his past deviation. Suppose that agents send

messages to j so as to induce an action in γj (Mj) only conditional on γj, say gj(γj) ∈

γj (Mj) irrespective of their own types. This means that offering γj is equivalent to

offering a single action gj(γj).

Then, we can restrict principal j to choose an action in Aj in the phase where

he is punished. For any given action αj that principal j takes, for the other princi-

pals, punishing principal j is equivalent to choosing a profile of their CIC DMs condi-

tional on αj. The reason is that agents’ equilibrium communication with them, given

the mechanisms that they choose, induces CIC DMs. Therefore, principal j’s lowest

possible utility conditional on αj can be realized if other principals can implement

ϕj−j (αj) =
(
ϕj` (αj)

)
6̀=j ∈ ΠC

−j (αj), where ϕj` (αj) is principal `’s DM and ϕj−j (αj) is

defined in (20). In the phase where principal j is punished, all principals offers the

EDMs ζj−j =
(
ζj`
)
` 6=j satisfying (20).

Now we choose the mapping gj : Γj → Aj as follows. If principal j offers γj ∈ Γj

in the phase where he is punished, let agents send messages to principal j that induce

gj
(
γj
)
, which is defined in (21). At the same time, agents send gj

(
γj
)

and their types

to non-deviating principals who offer the EDMs. The proofs of 1 and 2 in Theorem

1 below show that this is part of an equilibrium in the phase where principal j is

punished for his past deviation. This means that principal j cannot do any better by

offering a mechanism in Γj than he does by offering an action in Aj. Therefore, even

when principal j can choose any mechanism in Γj, the maximum utility principal j can
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achieve is

max
αj∈Aj

Eµ
[
uj
(
ϕj−j (αj) (θ) , αj, θ

)]
= max

αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ [uj (π−j (θ) , αj, θ)] , (A1)

which is the left-hand side of (14). Together with Lemma 1, this implies that (19) is

true for all j ∈ J .

Now we prove 1 and 2 in Theorem 1.

Notation: In discussions related to our results, generic players are denoted by i and

j unless explicitly noted otherwise.

Fix any (correlated) SCF f ∗ ∈ FC (µ) that yields vj as player j’s expected utility

for j ∈ I ∪ J . This is the target equilibrium utility for player j. Following Fudenberg

and Maskin (1986), we choose a vector of utilities (v′1, . . . , v
′
J), with wCj < v′j < vj for

all j ∈ I ∪J . The full dimensionality assumption ensures that for each j, there exists

ε > 0 and a SCF in FC (µ) that yields expected utilities

βj :=
(
βji
)i=I+J
i=1

=
(
v′1 + ε, . . . , v′j−1 + ε, v′j, v

′
j+1 + ε, . . . , v′J+I + ε

)
(A2)

such that ε is small enough to satisfy βji < vj for i 6= j. Strategies are defined by the

following rules.

1. Play starts in phase I. Suppose that f = (f1, . . . , fJ) in the support of f ∗ ∈ FC (µ)

is a SCF that needs to be supported given the realization of the PCD. Each

principal j offers the DM πj = fj. Agents report the actual type θti to all

principals at time t. If principal j deviates unilaterally (offers a mechanism other

than πj), agents play a one-shot continuation equilibrium in the current period;

play moves to phase IIj from the next period. If agent i’s deviation from truthful

type reporting is detected, move to phase IIi from the next period.
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2. Let us explain phase II. Phase IIj proceeds as follows for j ∈ J . For any γj ∈ Γj

offered by principal j, agents send messages to j to induce the action gj
(
γj
)

irrespective of their types. Each principal k 6= j offers the EDM ζjk that assigns

the DM ϕjk (αj) if a majority of agents report αj. Agents report the true types

and gj
(
γj
)

to each principal k 6= j at time t.

Phase IIi proceeds as follows for i ∈ I. Principals offer the profile of DMs

πi = (πi1, . . . π
i
J) that attains wCi of agent i.

If any player ` deviates and he/she is detected as the unique deviator while in

phase IIi for i ∈ I ∪ J , start phase II`. If an agent deviates but no agent can

be identified as the unique deviator, start phase II` for all ` ∈ I with probability

1/I according to the realization of the PCD (See footnote 11). If there is no

deviation in IIi for i ∈ I ∪ J , switch to phase IIIi with probability 1 − q ∈

(0, 1) independently across time after each period spent in phase IIi, where q is

determined based on the realization of the PCD.

3. In phase IIIi, for i ∈ I ∪ J , pick a (correlated) SCF f̃ ∈ 4FC0 based on the

realization of the PCD, which yields expected utility vector βi; principal j offers

the DM πi = fi when a SCF f = (f1, . . . , fJ) in the support of f̃ is supposed

to be implemented give the realization of the PCD. Agents report their types

truthfully. Remain forever in this phase, unless any player ` deviates unilaterally

and triggers phase II`.

Verification of Equilibrium:

By the one-shot deviation principle, it suffices to show that the proposed strategy is

unimprovable, i.e. no one-shot deviation by any player i from any phase is profitable.

Let Lij denote player j’s expected utility from the beginning of phase IIi without

deviation. First, with j = i, player i’s lifetime (discounted average) utility in phase IIi
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is defined recursively as Lii = (1− δ)wCi + δ(qLii + (1− q)βii) , so that

Lii =
(1− δ)wCi + δ(1− q)βii

1− δq
. (A3)

Note that Lii → βii = v′i as δ → 1. When calculating Lij for j 6= i, note that it is

bounded on both sides as follows:

(1− δ) (−u) + δ(qLij + (1− q)βij) ≤ Lij ≤ (1− δ)u+ δ(qLij + (1− q)βij).

Recall that u = maxI∪J ,A,Θ |ui (α, θ)| denotes the maximum stage-game utility.

Find a parameter q ∈ (0, 1) such that

u (1− q) < βjj (1 + p− q)− pwCj for all j ∈ I ∪ J . (A4)

Such a q exists because at q = 1 this inequality becomes 0 < p(βjj − wCj ), which is

satisfied because βjj = v′j > wCj .

As δ → 1, it is easy to check that Lij → βij = v′j + ε.

1. Phase IIIi for i ∈ I ∪ J : From the definitions, it is clear that the difference in

the lifetime utilities to one-shot deviation and conformity cannot be greater than

(1− δ)u+ δ[(1− p)βii + pLii]−βii = (1− δ)
[
u− (1 + δp− δq)βii − δpwCi

1− δq

]
(A5)

using (A3). An immediate implication of inequality (A4) defining q is that (A5)

is strictly negative for all δ close to 1, so that i cannot profitably deviate from

Phase IIIi. Since βij > βjj ∀j 6= i, it is immediate that, for such δ satisfying

(1− δ)u + δ[(1 − p)βii + pLii] − βii < 0, players j 6= i do not have a profitable

one-shot deviation either from phase IIIi.
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2. Phase IIj for j ∈ J : This is the phase where principal j is punished. Given

j’s mechanism γj, suppose that agent i deviates to induce an action other than

gj(γj). Then, move to phase IIk for all k ∈ I with probability 1/I. Agent i

will not deviate to induce an action from γj other than gj(γj) if the following

condition is satisfied

(1− δ)u+ δ
1

I

J+I∑
k=J+1

Lki ≤ Lji .

This condition is satisfied with strict inequality as δ → 1 because the left-hand

and right hand-side approach v′i + I−1
I
ε and v′i + ε respectively as δ → 1. Agent

i also will not deviate from truthful type reporting to non-deviating principals

who offer EDMs if

(1− δ)u+ δ[(1− p)Lji + pLii] ≤ Lji . (A6)

This condition is satisfied with strict inequality as δ → 1 because the left-hand

and right hand-side approach v′i+(1−p)ε and v′i+ε respectively as δ → 1. Given

the majority rule employed in non-deviating principals’ EDMs, agent i also has

no incentive to deviate from truthful reporting of principal j’s action to non-

deviating principals when all agents report principal j’s true action. Principal

i 6= j will not deviate if

(1− δ)u+ δLii ≤ Lji , (A7)

which is clearly satisfied as δ → 1 because the left-hand and right hand-side

approach v′i and v′i + ε respectively as δ → 1. Principal j will choose his own

mechanism that best respond to others’ EDMs and agents’ communication pro-

tocol.

3. Phase IIj for j ∈ I: This is the phase where principals offer a profile of DMs
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that are UIC for agent j but CIC for the other agents in order to punish agent j.

Since UIC is imposed for agent j, there is no need for deviation by agent j. Agent

i (i 6= j) will not deviate if (1− δ)u+ δ[(1− p)Lji + pLii] ≤ Lji . Similar to (A6),

this is satisfied as δ → 1. Principal i 6= j will not deviate if (1− δ)u+ δLii ≤ Lji .

Similar to (A7), this is also satisfied as δ → 1.

4. Phase I: This is on the equilibrium path where principals offer a profile of CIC

DMs given the realization of the PCD. Principal j will not deviate if (1− δ)u+

δLjj ≤ vj, which is satisfied because, as δ → 1, the left-hand approaches v′j that

is less than vj. Agent j will not deviate if (1− δ)u + δ[(1 − p)vj + pLjj] ≤ vj,

which is also satisfied because, as δ → 1, the left-hand approaches (1−p)vj +pv′j

that is less than vj.

In sum, for high δ, the posited strategy profile is unimprovable after all histories,

and hence is an equilibrium.

B Proof of Corollary 2

Note that given the two agents, principal `’s EDM ζj` assigns α` when the two agents

send inconsistent messages on j’s action. The crux of the proof is how to pick α` that

is a perfect signal to the other principals on agents’ inconsistent messages on j’s action

to principal `.

Principal `’s EDM assigns an action ϕj` (αj) (θ) when θ is a profile of type messages

that agents send to principal ` and more than a half of agents (both agents in the

model with two agents) send αj as j’s action to principal `. Recall that ϕj−j (αj) is

the profile of CIC DMs for the principals except for j that minimizes principal j’s

utility conditional on αj. Then, {ϕj` (αj) (θ) ∈ A` : αj ∈ Aj, θ ∈ Θ} is the set of

principal `’s actions that can be induced by all profiles of agents’ consistent messages
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on principal j’s action and all profile of their type messages. If it is the strict subset

of A` (i.e, {ϕj` (αj) (θ) ∈ A` : αj ∈ Aj, θ ∈ Θ} ( A`), then A`\{ϕj` (αj) (θ) ∈ A` :

αj ∈ Aj, θ ∈ Θ} is non-empty. For α`, principal ` can choose an arbitrary action in

A`\{ϕj` (αj) (θ) ∈ A` : αj ∈ Aj, θ ∈ Θ}. Upon observing α` at the end of the period,

the other principals know that two agents sent inconsistent messages on principal j’s

action to principal `. After observing α`, each agent is punished with equal probability.

Therefore, a sufficient condition for providing both agents with incentives to truth-

fully report principal j’s action to each principal `(6= j) is {ϕj` (αj) (θ) ∈ A` : αj ∈

Aj, θ ∈ Θ} ( A`, equivalently, (22). The remaining proof to establish Theorem 1 with

I = 2 is omitted since it is analogous to the proof of Theorem 1 with I ≥ 3.

C Proof of Corollary 3

The crucial part of the proof is how agents monitor themselves and let principals know

a player’s deviation when they detect it. The other parts of the proof can be done

analogous to the proof of Theorem 1.

In any period, if more than a half of agents are silent at the end of the period,

a principal believes no one has deviated in the current period. If more than a half

of agents report {j} ⊂ J to each principal ` then those principals believe that j has

deviated and it is what principal j expects when he deviates. If more than a half of

agents report {i} ⊂ I to every principal, principals believe that i has deviated. If more

than a half of agents report I to each principal, principals believe that there is at least

one agent has deviated.

Fix a period. If principal j deviates, each agent sends {j} as her cheap talk message

to all principals. Note that a principal’s deviation is detected by agents with probability

one because mechanisms are observable.
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If actions become observable for agents and the observed action profile uniquely

identifies the deviating agent, say i, then each agent sends {i} as her cheap talk message

to all principal.

If the current period is in the phase where principal j is punished actions, actions

become observable for agents, and the observed action profile reveals that there is a

deviating agent but not the identity of a deviating agent, then each agent sends I to

each principal. Principals then punish each agent with equal probability. In all other

cases, agents remain silent.

Given principals’ beliefs, the cheap talk message strategy described above is optimal

for each agent when everyone else follows it. The only thing we need to be careful about

is that the choice of q. Recall that, after player j ∈ I ∪ J deviates, players stay in

phase IIj where the deviator is punished with probability q and move to the phase

where each player i ( 6= j) is rewarded with βji with probability 1 − q. Analogous to

(A4), we choose q ∈ (0, 1) such that

u (1− q) < βjj (1 + λp− q)− pwCj for all j ∈ I ∪ J . (A8)

Such a q exists because at q = 1 this inequality becomes 0 < λp(βjj − wCj ), which is

satisfied because βjj = v′j > wCj .

D Proof of Corollary 4

When both agents’ cheap talk messages are the same, principals believe that it is the

set of deviating players. If agents’ cheap talk messages are inconsistent, principals

believe that at least one agent’s cheap talk message is not true. In this case, both

agents are punished with equal probability.

An agent’s cheap talk message is truthful except for the case where an agent, say i,
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deviates from her communication strategy for principals’ mechanisms, actions become

observable for agents and the observed action profile reveals her deviation. In this case,

she announces i′ ∈ I\{i} as her cheap talk. Since the other agent announces i in this

case, each agent is punished with equal probability.

The remaining parts of the proof can be done analogous to the proof of Theorem 1

given q ∈ (0, 1) that satisfies (A8).
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